

    
      
          
            
  
LUMIN

Lumin Unifies Many Improvements for Networks

LUMIN aims to become a deep-learning and data-analysis ecosystem for
High-Energy Physics, and perhaps other scientific domains in the future.
Similar to Keras [https://keras.io/] and fastai [https://github.com/fastai/fastai] it is a wrapper framework for a graph
computation library (PyTorch), but includes many useful functions to
handle domain-specific requirements and problems. It also intends to
provide easy access to to state-of-the-art methods, but still be
flexible enough for users to inherit from base classes and override
methods to meet their own demands.


Package Reference


	lumin.data_processing package

	lumin.evaluation package

	lumin.inference package

	lumin.nn package

	lumin.optimisation package

	lumin.plotting package

	lumin.utils package








Package Description


Distinguishing Characteristics


Data objects


	Use with large datasets: HEP data can become quite large, making training difficult:


	The FoldYielder class provides on-demand access to data stored in HDF5 format, only loading into memory what is required.


	Conversion from ROOT and CSV to HDF5 is easy to achieve using (see examples)


	FoldYielder provides conversion methods to Pandas DataFrame for use with other internal methods and external packages






	Non-network-specific methods expect Pandas DataFrame allowing their use without having to convert to FoldYielder.







Deep learning


	PyTorch > 1.0


	Inclusion of recent deep learning techniques and practices, including:


	Dynamic learning rate, momentum, beta_1:


	Cyclical, Smith, 2015 [https://arxiv.org/abs/1506.01186]


	Cosine annealed Loschilov & Hutter, 2016 [https://arxiv.org/abs/1608.03983]


	1-cycle, Smith, 2018 [https://arxiv.org/abs/1803.09820]






	HEP-specific data augmentation during training and inference


	Advanced ensembling methods:


	Snapshot ensembles Huang et al., 2017 [https://arxiv.org/abs/1704.00109]


	Fast geometric ensembles Garipov et al., 2018 [https://arxiv.org/abs/1802.10026]


	Stochastic Weight Averaging Izmailov et al., 2018 [https://arxiv.org/abs/1803.05407]






	Learning Rate Finders, Smith, 2015 [https://arxiv.org/abs/1506.01186]


	Entity embedding of categorical features, Guo & Berkhahn, 2016 [https://arxiv.org/abs/1604.06737]


	Label smoothing Szegedy et al., 2015 [https://arxiv.org/abs/1512.00567]






	Flexible architecture construction:


	ModelBuilder takes parameters and modules to yield networks on-demand


	Networks constructed from modular blocks:


	Head - Takes input features


	Body - Contains most of the hidden layers


	Tail - Scales down the body to the desired number of outputs


	Endcap - Optional layer for use post-training to provide further computation on model outputs; useful when training on a proxy objective






	Easy loading and saving of pre-trained embedding weights


	Modern architectures like:


	Residual and dense(-like) networks (He et al. 2015 [https://arxiv.org/abs/1512.03385] & Huang et al. 2016 [https://arxiv.org/abs/1608.06993])


	Graph nets for physics objects, e.g. Battaglia, Pascanu, Lai, Rezende, Kavukcuoglu, 2016 [https://arxiv.org/abs/1612.00222] & Moreno et al., 2019 [https://arxiv.org/abs/1908.05318]


	Recurrent layers for series of objects


	1D convolutional networks for series of objects


	HEP-specific architectures, e.g. LorentzBoostNetworks Erdmann, Geiser, Rath, Rieger, 2018 [https://arxiv.org/abs/1812.09722]










	Configurable initialisations, including LSUV Mishkin, Matas, 2016 [https://arxiv.org/abs/1511.06422]


	HEP-specific losses, e.g. Asimov loss Elwood & Krücker, 2018 [https://arxiv.org/abs/1806.00322]


	Easy training and inference of ensembles of models:


	Default training method fold_train_ensemble, trains a specified number of models as well as just a single model


	Ensemble class handles the (metric-weighted) construction of an ensemble, its inference, saving and loading, and interpretation






	Easy exporting of models to other libraries via Onnx


	Use with CPU and NVidia GPU


	Evaluation on domain-specific metrics such as Approximate Median Significance via EvalMetric class


	Keras-style callbacks







Feature selection methods


	Dendrograms of feature-pair monotonacity


	Feature importance via auto-optimised SK-Learn random forests


	Mutual dependance (via RFPImp)


	Automatic filtering and selection of features







Interpretation


	Feature importance for models and ensembles


	Embedding visualisation


	1D & 2D partial dependency plots (via PDPbox)







Plotting


	Variety of domain-specific plotting functions


	Unified appearance via PlotSettings class - class accepted by every plot function providing control of plot appearance, titles, colour schemes, et cetera







Universal handling of sample weights


	HEP events are normally accompanied by weight characterising the acceptance and production cross-section of that particular event, or to flatten some distribution.


	Relevant methods and classes can take account of these weights.


	This includes training, interpretation, and plotting


	Expansion of PyTorch losses to better handle weights







Parameter optimisation


	Optimal learning rate via cross-validated range tests Smith, 2015 [https://arxiv.org/abs/1506.01186]


	Quick, rough optimisation of random forest hyper parameters


	Generalisable Cut & Count thresholds


	1D discriminant binning with respect to bin-fill uncertainty







Statistics and uncertainties


	Integral to experimental science


	Quantitative results are accompanied by uncertainties


	Use of bootstrapping to improve precision of statistics estimated from small samples







Look and feel


	LUMIN aims to feel fast to use - liberal use of progress bars mean you’re able to always know when tasks will finish, and get live updates of training


	Guaranteed to spark joy (in its current beta state, LUMIN may instead ignite rage, despair, and frustration - dev.)









Installation

Due to some strict version requirements on packages, it is recommended to install LUMIN in its own Python environment, e.g conda create -n lumin python=3.6


From PyPI

The main package can be installed via:
pip install lumin

Full functionality requires two additional packages as described below.




From source

git clone git@github.com:GilesStrong/lumin.git
cd lumin
pip install .





Optionally, run pip install with -e flag for development installation. Full functionality requires an additional package as described below.




Additional modules

Full use of LUMIN requires the latest version of PDPbox, but this is not released yet on PyPI, so you’ll need to install it from source, too:


	git clone https://github.com/SauceCat/PDPbox.git && cd PDPbox && pip install -e . note the -e flag to make sure the version number gets set properly.









Notes


Why use LUMIN

TMVA contained in CERN’s ROOT system, has been the default choice for BDT training for analysis and reconstruction algorithms due to never having to leave ROOT format. With the gradual move to DNN approaches, more scientists are looking to move their data out of ROOT to use the wider selection of tools which are available. Keras appears to be the first stop due to its ease of use, however implementing recent methods in Keras can be difficult, and sometimes requires dropping back to the tensor library that it aims to abstract. Indeed, the prequel to LUMIN was a similar wrapper for Keras (HEPML_Tools [https://github.com/GilesStrong/hepml_tools]) which involved some pretty ugly hacks.
The fastai framework provides access to these recent methods, however doesn’t yet support sample weights to the extent that HEP requires.
LUMIN aims to provide the best of both, Keras-style sample weighting and fastai training methods, while focussing on columnar data and providing domain-specific metrics, plotting, and statistical treatment of results and uncertainties.




Data types

LUMIN is primarily designed for use on columnar data, and from version 0.5 onwards this also includes matrix data; ordered series and un-ordered groups of objects. With some extra work it can be used on other data formats, but at the moment it has nothing special to offer. Whilst recent work in HEP has made use of jet images and GANs, these normally hijack existing ideas and models. Perhaps once we get established, domain specific approaches which necessitate the use of a specialised framework, then LUMIN could grow to meet those demands, but for now I’d recommend checking out the fastai library, especially for image data.

With just one main developer, I’m simply focussing on the data types and applications I need for my own research and common use cases in HEP. If, however you would like to use LUMIN’s other methods for your own work on other data formats, then you are most welcome to contribute and help to grow LUMIN to better meet the needs of the scientific community.




Future

The current priority is to imporve the documentation, add unit tests, and expand the examples.

The next step will be to try to increase the user base and number of contributors. I’m aiming to achieve this through presentations, tutorials, blog posts, and papers.

Further improvements will be in the direction of implementing new methods and (HEP-specific) architectures, as well as providing helper functions and data exporters to statistical analysis packages like Combine and PYHF.




Contributing & feedback

Contributions, suggestions, and feedback are most welcome! The issue tracker on this repo is probably the best place to report bugs et cetera.




Code style

Nope, the majority of the codebase does not conform to PEP8. PEP8 has its uses, but my understanding is that it primarily written for developers and maintainers of software whose users never need to read the source code. As a maths-heavy research framework which users are expected to interact with, PEP8 isn’t the best style. Instead, I’m aiming to follow more the style of fastai [https://docs.fast.ai/dev/style.html], which emphasises, in particular, reducing vertical space (useful for reading source code in a notebook) naming and abbreviating variables according to their importance and lifetime (easier to recognise which variables have a larger scope and permits easier writing of mathematical operations). A full list of the abbreviations used may be found in abbr.md [https://github.com/GilesStrong/lumin/blob/master/abbr.md]




Why is LUMIN called LUMIN?

Aside from being a recursive acronym (and therefore the best kind of acronym) lumin is short for ‘luminosity’. In high-energy physics, the integrated luminosity of the data collected by an experiment is the main driver in the results that analyses obtain. With the paradigm shift towards multivariate analyses, however, improved methods can be seen as providing ‘artificial luminosity’; e.g. the gain offered by some DNN could be measured in terms of the amount of extra data that would have to be collected to achieve the same result with a more traditional analysis. Luminosity can also be connected to the fact that LUMIN is built around the python version of Torch.




Who develops LUMIN

LUMIN is primarily developed by Giles Strong; a British-born PhD student in particle physics at IST (Portugal), and researcher at The University of Padova (Italy), and a member of the CMS collaboration at CERN.

As LUMIN has grown, it has welcomed contributions from members of the scientific and software development community. Check out the contributors page [https://github.com/GilesStrong/lumin/graphs/contributors] for a complete list.

Certainly more developers and contributors are welcome to join and help out!




Reference

If you have used LUMIN in your analysis work and wish to cite it, the preferred reference is: Giles C. Strong, LUMIN, Zenodo (Mar. 2019), https://doi.org/10.5281/zenodo.2601857, Note: Please check https://github.com/GilesStrong/lumin/graphs/contributors for the full list of contributors

@misc{giles_chatham_strong_2019_2601857,
  author       = {Giles Chatham Strong},
  title        = {LUMIN},
  month        = mar,
  year         = 2019,
  note         = {{Please check https://github.com/GilesStrong/lumin/graphs/contributors for the full list of contributors}},
  doi          = {10.5281/zenodo.2601857},
  url          = {https://doi.org/10.5281/zenodo.2601857}
}
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lumin.data_processing package


Submodules




lumin.data_processing.file_proc module


	
lumin.data_processing.file_proc.save_to_grp(arr, grp, name, compression=None)

	Save Numpy array as a dataset in an h5py Group


	Parameters

	
	arr (ndarray) – array to be saved


	grp (Group) – group in which to save arr


	name (str) – name of dataset to create


	compression (Optional[str]) – optional compression argument for h5py, e.g. ‘lzf’






	Return type

	None










	
lumin.data_processing.file_proc.fold2foldfile(df, out_file, fold_idx, cont_feats, cat_feats, targ_feats, targ_type, misc_feats=None, wgt_feat=None, matrix_lookup=None, matrix_missing=None, matrix_shape=None, tensor_data=None, compression=None)

	Save fold of data into an h5py Group


	Parameters

	
	df (DataFrame) – Dataframe from which to save data


	out_file (File) – h5py file to save data in


	fold_idx (int) – ID for the fold; used name h5py group according to ‘fold_{fold_idx}’


	cont_feats (List[str]) – list of columns in df to save as continuous variables


	cat_feats (List[str]) – list of columns in df to save as discreet variables


	targ_feats (Union[str, List[str]]) – (list of) column(s) in df to save as target feature(s)


	targ_type (Any) – type of target feature, e.g. int,’float32’


	misc_feats (Optional[List[str]]) – any extra columns to save


	wgt_feat (Optional[str]) – column to save as data weights


	matrix_vecs – list of objects for matrix encoding, i.e. feature prefixes


	matrix_feats_per_vec – list of features per vector for matrix encoding, i.e. feature suffixes.
Features listed but not present in df will be replaced with NaN.


	matrix_row_wise – whether objects encoded as a matrix should be encoded row-wise (i.e. all the features associated with an object are in their own row),
or column-wise (i.e. all the features associated with an object are in their own column)


	tensor_data (Optional[ndarray]) – data of higher order than a matrix can be passed directly as a numpy array, rather than beign extracted and reshaped from the DataFrame.
The array will be saved under matrix data, and this is incompatible with also setting matrix_lookup, matrix_missing, and matrix_shape.
The first dimension of the array must be compatible with the length of the data frame.


	compression (Optional[str]) – optional compression argument for h5py, e.g. ‘lzf’






	Return type

	None










	
lumin.data_processing.file_proc.df2foldfile(df, n_folds, cont_feats, cat_feats, targ_feats, savename, targ_type, strat_key=None, misc_feats=None, wgt_feat=None, cat_maps=None, matrix_vecs=None, matrix_feats_per_vec=None, matrix_row_wise=None, tensor_data=None, tensor_name=None, tensor_is_sparse=False, compression=None)

	Convert dataframe into h5py file by splitting data into sub-folds to be accessed by a FoldYielder


	Parameters

	
	df (DataFrame) – Dataframe from which to save data


	n_folds (int) – number of folds to split df into


	cont_feats (List[str]) – list of columns in df to save as continuous variables


	cat_feats (List[str]) – list of columns in df to save as discreet variables


	targ_feats (Union[str, List[str]]) – (list of) column(s) in df to save as target feature(s)


	savename (Union[Path, str]) – name of h5py file to create (.h5py extension not required)


	targ_type (str) – type of target feature, e.g. int,’float32’


	strat_key (Optional[str]) – column to use for stratified splitting


	misc_feats (Optional[List[str]]) – any extra columns to save


	wgt_feat (Optional[str]) – column to save as data weights


	cat_maps (Optional[Dict[str, Dict[int, Any]]]) – Dictionary mapping categorical features to dictionary mapping codes to categories


	matrix_vecs (Optional[List[str]]) – list of objects for matrix encoding, i.e. feature prefixes


	matrix_feats_per_vec (Optional[List[str]]) – list of features per vector for matrix encoding, i.e. feature suffixes.
Features listed but not present in df will be replaced with NaN.


	matrix_row_wise (Optional[bool]) – whether objects encoded as a matrix should be encoded row-wise (i.e. all the features associated with an object are in their own row),
or column-wise (i.e. all the features associated with an object are in their own column)


	tensor_data (Optional[ndarray]) – data of higher order than a matrix can be passed directly as a numpy array, rather than beign extracted and reshaped from the DataFrame.
The array will be saved under matrix data, and this is incompatible with also setting matrix_vecs, matrix_feats_per_vec, and matrix_row_wise.
The first dimension of the array must be compatible with the length of the data frame.


	tensor_name (Optional[str]) – if tensor_data is set, then this is the name that will to the foldfile’s metadata.


	tensor_is_sparse (bool) – Set to True if the matrix is in sparse COO format and should be densified later on
The format expected is coo_x = sparse.as_coo(x); m = np.vstack((coo_x.data, coo_x.coords)), where m is the tensor passed to tensor_data.


	compression (Optional[str]) – optional compression argument for h5py, e.g. ‘lzf’






	Return type

	None










	
lumin.data_processing.file_proc.add_meta_data(out_file, feats, cont_feats, cat_feats, cat_maps, targ_feats, wgt_feat=None, matrix_vecs=None, matrix_feats_per_vec=None, matrix_row_wise=None, tensor_name=None, tensor_shp=None, tensor_is_sparse=False)

	Adds meta data to foldfile containing information about the data: feature names, matrix information, etc.
FoldYielder objects will access this and automatically extract it to save the user from having to manually pass lists
of features.


	Parameters

	
	out_file (File) – h5py file to save data in


	feats (List[str]) – list of all features in data


	cont_feats (List[str]) – list of continuous features


	cat_feats (List[str]) – list of categorical features


	cat_maps (Optional[Dict[str, Dict[int, Any]]]) – Dictionary mapping categorical features to dictionary mapping codes to categories


	targ_feats (Union[str, List[str]]) – (list of) target feature(s)


	wgt_feat (Optional[str]) – name of weight feature


	matrix_vecs (Optional[List[str]]) – list of objects for matrix encoding, i.e. feature prefixes


	matrix_feats_per_vec (Optional[List[str]]) – list of features per vector for matrix encoding, i.e. feature suffixes.
Features listed but not present in df will be replaced with NaN.


	matrix_row_wise (Optional[bool]) – whether objects encoded as a matrix should be encoded row-wise (i.e. all the features associated with an object are in their own row),
or column-wise (i.e. all the features associated with an object are in their own column)


	tensor_name (Optional[str]) – Name used to refer to the tensor when displaying model information


	tensor_shp (Optional[Tuple[int]]) – The shape of the tensor data (exclusing batch dimension)


	tensor_is_sparse (bool) – Whether the tensor is sparse (COO format) and should be densified prior to use






	Return type

	None












lumin.data_processing.hep_proc module


	
lumin.data_processing.hep_proc.to_cartesian(df, vec, drop=False)

	Vectoriesed conversion of 3-momenta to Cartesian coordinates inplace, optionally dropping old pT,eta,phi features


	Parameters

	
	df (DataFrame) – DataFrame to alter


	vec (str) – column prefix of vector components to alter, e.g. ‘muon’ for columns [‘muon_pt’, ‘muon_phi’, ‘muon_eta’]


	drop (bool) – Whether to remove original columns and just keep the new ones






	Return type

	None










	
lumin.data_processing.hep_proc.to_pt_eta_phi(df, vec, drop=False)

	Vectorised conversion of 3-momenta to pT,eta,phi coordinates inplace, optionally dropping old px,py,pz features


	Parameters

	
	df (DataFrame) – DataFrame to alter


	vec (str) – column prefix of vector components to alter, e.g. ‘muon’ for columns [‘muon_px’, ‘muon_py’, ‘muon_pz’]


	drop (bool) – Whether to remove original columns and just keep the new ones






	Return type

	None










	
lumin.data_processing.hep_proc.delta_phi(arr_a, arr_b)

	Vectorised computation of modulo 2pi angular seperation of array of angles b from array of angles a, in range [-pi,pi]


	Parameters

	
	arr_a (Union[float, ndarray]) – reference angles


	arr_b (Union[float, ndarray]) – final angles






	Return type

	Union[float, ndarray]



	Returns

	angular separation as float or np.ndarray










	
lumin.data_processing.hep_proc.twist(dphi, deta)

	Vectorised computation of twist between vectors (https://arxiv.org/abs/1010.3698)


	Parameters

	
	dphi (Union[float, ndarray]) – delta phi separations


	deta (Union[float, ndarray]) – delta eta separations






	Return type

	Union[float, ndarray]



	Returns

	angular separation as float or np.ndarray










	
lumin.data_processing.hep_proc.add_abs_mom(df, vec, z=True)

	Vectorised computation 3-momenta magnitude, adding new column in place. Currently only works for Cartesian vectors


	Parameters

	
	df (DataFrame) – DataFrame to alter


	vec (str) – column prefix of vector components, e.g. ‘muon’ for columns [‘muon_px’, ‘muon_py’, ‘muon_pz’]


	z (bool) – whether to consider the z-component of the momenta






	Return type

	None










	
lumin.data_processing.hep_proc.add_mass(df, vec)

	Vectorised computation of mass of 4-vector, adding new column in place.


	Parameters

	
	df (DataFrame) – DataFrame to alter


	vec (str) – column prefix of vector components, e.g. ‘muon’ for columns [‘muon_px’, ‘muon_py’, ‘muon_pz’]






	Return type

	None










	
lumin.data_processing.hep_proc.add_energy(df, vec)

	Vectorised computation of energy of 4-vector, adding new column in place.


	Parameters

	
	df (DataFrame) – DataFrame to alter


	vec (str) – column prefix of vector components, e.g. ‘muon’ for columns [‘muon_px’, ‘muon_py’, ‘muon_pz’]






	Return type

	None










	
lumin.data_processing.hep_proc.add_mt(df, vec, mpt_name='mpt')

	Vectorised computation of transverse mass of 4-vector with respect to missing transverse momenta, adding new column in place.
Currently only works for pT, eta, phi vectors


	Parameters

	
	df (DataFrame) – DataFrame to alter


	vec (str) – column prefix of vector components, e.g. ‘muon’ for columns [‘muon_px’, ‘muon_py’, ‘muon_pz’]


	mpt_name (str) – column prefix of vector of missing transverse momenta components, e.g. ‘mpt’ for columns [‘mpt_pT’, ‘mpt_phi’]













	
lumin.data_processing.hep_proc.get_vecs(feats, strict=True)

	Filter list of features to get list of 3-momenta defined in the list. Works for both pT, eta, phi and Cartesian coordinates.
If strict, return only vectors with all coordinates present in feature list.


	Parameters

	
	feats (List[str]) – list of features to filter


	strict (bool) – whether to require all 3-momenta components to be present in the list






	Return type

	Set[str]



	Returns

	set of unique 3-momneta prefixes










	
lumin.data_processing.hep_proc.fix_event_phi(df, ref_vec)

	Rotate event in phi such that ref_vec is at phi == 0. Performed inplace. Currently only works on vectors defined in pT, eta, phi


	Parameters

	
	df (DataFrame) – DataFrame to alter


	ref_vec (str) – column prefix of vector components to use as reference, e.g. ‘muon’ for columns [‘muon_pT’, ‘muon_eta’, ‘muon_phi’]






	Return type

	None










	
lumin.data_processing.hep_proc.fix_event_z(df, ref_vec)

	Flip event in z-axis such that ref_vec is in positive z-direction. Performed inplace. Works for both pT, eta, phi and Cartesian coordinates.


	Parameters

	
	df (DataFrame) – DataFrame to alter


	ref_vec (str) – column prefix of vector components to use as reference, e.g. ‘muon’ for columns [‘muon_pT’, ‘muon_eta’, ‘muon_phi’]






	Return type

	None










	
lumin.data_processing.hep_proc.fix_event_y(df, ref_vec_0, ref_vec_1)

	Flip event in y-axis such that ref_vec_1 has a higher py than ref_vec_0. Performed in place. Works for both pT, eta, phi and Cartesian coordinates.


	Parameters

	
	df (DataFrame) – DataFrame to alter


	ref_vec_0 (str) – column prefix of vector components to use as reference 0, e.g. ‘muon’ for columns [‘muon_pT’, ‘muon_eta’, ‘muon_phi’]


	ref_vec_1 (str) – column prefix of vector components to use as reference 1, e.g. ‘muon’ for columns [‘muon_pT’, ‘muon_eta’, ‘muon_phi’]






	Return type

	None










	
lumin.data_processing.hep_proc.event_to_cartesian(df, drop=False, ignore=None)

	Convert entire event to Cartesian coordinates, except vectors listed in ignore. Optionally, drop old pT,eta,phi features. Perfomed inplace.


	Parameters

	
	df (DataFrame) – DataFrame to alter


	drop (bool) – whether to drop old coordinates


	ignore (Optional[List[str]]) – vectors to ignore when converting






	Return type

	None










	
lumin.data_processing.hep_proc.proc_event(df, fix_phi=False, fix_y=False, fix_z=False, use_cartesian=False, ref_vec_0=None, ref_vec_1=None, keep_feats=None, default_vals=None)

	Process event: Pass data through inplace various conversions and drop uneeded columns. Data expected to consist of vectors defined in pT, eta, phi.


	Parameters

	
	df (DataFrame) – DataFrame to alter


	fix_phi (bool) – whether to rotate events using fix_event_phi()


	fix_y – whether to flip events using fix_event_y()


	fix_z – whether to flip events using fix_event_z()


	use_cartesian – wether to convert vectors to Cartesian coordinates


	ref_vec_0 (Optional[str]) – column prefix of vector components to use as reference (0) for :meth:~lumin.data_prcoessing.hep_proc.fix_event_phi`,
fix_event_y(), and fix_event_z()
e.g. ‘muon’ for columns [‘muon_pT’, ‘muon_eta’, ‘muon_phi’]


	ref_vec_1 (Optional[str]) – column prefix of vector components to use as reference (1) for fix_event_y(),
e.g. ‘muon’ for columns [‘muon_pT’, ‘muon_eta’, ‘muon_phi’]


	keep_feats (Optional[List[str]]) – columns to keep which would otherwise be dropped


	default_vals (Optional[List[str]]) – list of default values which might be used to represent missing vector components. These will be replaced with np.nan.






	Return type

	None










	
lumin.data_processing.hep_proc.calc_pair_mass(df, masses, feat_map)

	Vectorised computation of invarient mass of pair of particles with given masses, using 3-momenta. Only works for vectors defined in Cartesian coordinates.


	Parameters

	
	df (DataFrame) – DataFrame vector components


	masses (Union[Tuple[float, float], Tuple[ndarray, ndarray]]) – tuple of masses of particles (either constant or different pair of masses per pair of particles)


	feat_map (Dict[str, str]) – dictionary mapping of requested momentum components to the features in df






	Return type

	ndarray



	Returns

	np.ndarray of invarient masses










	
lumin.data_processing.hep_proc.boost(ref_vec, boost_vec, df=None, rescale_boost=False)

	Vectorised boosting of reference vectors along boosting vectors.
N.B. Implementation adapted from ROOT (https://root.cern/)


	Parameters

	
	vec_0 – either (N,4) array of 4-momenta coordinates for starting vector,
or prefix name for starting vector, i.e. columns should have names of the form [vec_0]_px, etc.


	vec_1 – either (N,4) array of 4-momenta coordinates for boosting vector,
or prefix name for boosting vector, i.e. columns should have names of the form [vec_1]_px, etc.


	df (Optional[DataFrame]) – DataFrame with data


	rescale_boost (bool) – whether to divide the boost vector by its energy






	Return type

	ndarray



	Returns

	(N,4) array of boosted vector in Cartesian coordinates










	
lumin.data_processing.hep_proc.boost2cm(vec, df=None)

	Vectorised computation of boosting vector required to boost a vector to its centre-of-mass frame


	Parameters

	
	vec (Union[ndarray, str]) – either (N,4) array of 4-momenta coordinates for starting vector,
or prefix name for starting vector, i.e. columns should have names of the form [vec]_px, etc.


	df (Optional[DataFrame]) – DataFrame with data is supplying a string vec






	Return type

	ndarray



	Returns

	(N,3) array of boosting vector in Cartesian coordinates










	
lumin.data_processing.hep_proc.get_momentum(df, vec, include_E=False, as_cart=False)

	Extracts array of 3- or 4-momenta coordinates from DataFrame columns


	Parameters

	
	df (DataFrame) – DataFrame with data


	vec (str) – prefix name for vector, i.e. columns should have names of the form [vec]_px, etc.


	as_cart (bool) – if True will return momenta in Cartesian coordinates






	Returns

	(px, py, pz, (E)) or (pT, phi, eta, (E))



	Return type

	(N, 3|4) array with columns










	
lumin.data_processing.hep_proc.cos_delta(vec_0, vec_1, df=None, name=None, inplace=False)

	Vectorised compututation of the cosine of the angular seperation of vec_1 from vec_0
If vec_* are strings, then columns are extracted from DataFrame df.
If inplace is True Cosine angle is added a new column to the DataFrame with name cosdelta_[vec_0]_[vec_1] or cosdelta, unless name is set


	Parameters

	
	vec_0 (Union[ndarray, str]) – either (N,3) array of 3-momenta coordinates for vector 0,
or prefix name for vector zero, i.e. columns should have names of the form [vec_0]_px, etc.


	vec_1 (Union[ndarray, str]) – either (N,3) array of 3-momenta coordinates for vector 1,
or prefix name for vector one, i.e. columns should have names of the form [vec_1]_px, etc.


	df (Optional[DataFrame]) – DataFrame with data


	name (Optional[str]) – if set, will create a new column in df for cosdelta with given name, otherwise will generate a name


	inplace (bool) – if True will add new column to df, otherwise will return array of cos_deltas






	Return type

	Union[None, ndarray]



	Returns

	array of cos deltas in not inplace










	
lumin.data_processing.hep_proc.delta_r(dphi, deta)

	Vectorised computation of delta R separation for arrays of delta phi and delta eta (rapidity or pseudorapidity)


	Parameters

	
	dphi (Union[float, ndarray]) – delta phi separations


	deta (Union[float, ndarray]) – delta eta separations






	Return type

	Union[float, ndarray]



	Returns

	delta R separation as float or np.ndarray










	
lumin.data_processing.hep_proc.delta_r_boosted(vec_0, vec_1, ref_vec, df=None, name=None, inplace=False)

	Vectorised compututation of the deltaR seperation of vec_1 from vec_0 in the rest-frame of another vector
If vec_* are strings, then columns are extracted from DataFrame df.
If inplace is True deltaR is added a new column to the DataFrame with name dR_[vec_0]_[vec_1]_boosted_[ref_vec] or dR_boosted, unless name is set


	Parameters

	
	vec_0 (Union[ndarray, str]) – either (N,4) array of 4-momenta coordinates for vector 0, in Cartesian coordinates
or prefix name for vector zero, i.e. columns should have names of the form [vec_0]_px, etc.


	vec_1 (Union[ndarray, str]) – either (N,4) array of 4-momenta coordinates for vector 1, in Cartesian coordinates
or prefix name for vector one, i.e. columns should have names of the form [vec_1]_px, etc.


	ref_vec (Union[ndarray, str]) – either (N,4) array of 4-momenta coordinates for the vector in whos rest-frame deltaR should be computed, in Cartesian coordinates
or prefix name for reference vector, i.e. columns should have names of the form [ref_vec]_px, etc.


	df (Optional[DataFrame]) – DataFrame with data


	name (Optional[str]) – if set, will create a new column in df for cosdelta with given name, otherwise will generate a name


	inplace (bool) – if True will add new column to df, otherwise will return array of cos_deltas






	Return type

	Union[None, ndarray]



	Returns

	array of boosted deltaR in not inplace












lumin.data_processing.pre_proc module


	
lumin.data_processing.pre_proc.get_pre_proc_pipes(norm_in=True, norm_out=False, pca=False, whiten=False, with_mean=True, with_std=True, n_components=None)

	Configure SKLearn Pipelines for processing inputs and targets with the requested transformations.


	Parameters

	
	norm_in (bool) – whether to apply StandardScaler to inputs


	norm_out (bool) – whether to apply StandardScaler to outputs


	pca (bool) – whether to apply PCA to inputs. Perforemed prior to StandardScaler. No dimensionality reduction is applied, purely rotation.


	whiten (bool) – whether PCA should whiten inputs.


	with_mean (bool) – whether StandardScalers should shift means to 0


	with_std (bool) – whether StandardScalers should scale standard deviations to 1


	n_components (Optional[int]) – if set, causes PCA to reduce the dimensionality of the input data






	Return type

	Tuple[Pipeline, Pipeline]



	Returns

	Pipeline for input data
Pipeline for target data










	
lumin.data_processing.pre_proc.fit_input_pipe(df, cont_feats, savename=None, input_pipe=None, norm_in=True, pca=False, whiten=False, with_mean=True, with_std=True, n_components=None)

	Fit input pipeline to continuous features and optionally save.


	Parameters

	
	df (DataFrame) – DataFrame with data to fit pipeline


	cont_feats (Union[str, List[str]]) – (list of) column(s) to use as input data for fitting


	savename (Optional[str]) – if set will save the fitted Pipeline to with that name as Pickle (.pkl extension added automatically)


	input_pipe (Optional[Pipeline]) – if set will fit, otherwise will instantiate a new Pipeline


	norm_in (bool) – whether to apply StandardScaler to inputs. Only used if input_pipe is not set.


	pca (bool) – whether to apply PCA to inputs. Perforemed prior to StandardScaler.
No dimensionality reduction is applied, purely rotation. Only used if input_pipe is not set.


	whiten (bool) – whether PCA should whiten inputs. Only used if input_pipe is not set.


	with_mean (bool) – whether StandardScalers should shift means to 0. Only used if input_pipe is not set.


	with_std (bool) – whether StandardScalers should scale standard deviations to 1. Only used if input_pipe is not set.


	n_components (Optional[int]) – if set, causes PCA to reduce the dimensionality of the input data. Only used if input_pipe is not set.






	Return type

	Pipeline



	Returns

	Fitted Pipeline










	
lumin.data_processing.pre_proc.fit_output_pipe(df, targ_feats, savename=None, output_pipe=None, norm_out=True)

	Fit output pipeline to target features and optionally save. Have you thought about using a y_range for regression instead?


	Parameters

	
	df (DataFrame) – DataFrame with data to fit pipeline


	targ_feats (Union[str, List[str]]) – (list of) column(s) to use as input data for fitting


	savename (Optional[str]) – if set will save the fitted Pipeline to with that name as Pickle (.pkl extension added automatically)


	output_pipe (Optional[Pipeline]) – if set will fit, otherwise will instantiate a new Pipeline


	norm_out (bool) – whether to apply StandardScaler to outputs . Only used if output_pipe is not set.






	Return type

	Pipeline



	Returns

	Fitted Pipeline










	
lumin.data_processing.pre_proc.proc_cats(train_df, cat_feats, val_df=None, test_df=None)

	Process categorical features in train_df to be valued 0->cardinality-1. Applied inplace.
Applies same transformation to validation and testing data is passed.
Will complain if validation or testing sets contain categories which are not present in the training data.


	Parameters

	
	train_df (DataFrame) – DataFrame with the training data, which will also be used to specify all the categories to consider


	cat_feats (List[str]) – list of columns to use as categorical features


	val_df (Optional[DataFrame]) – if set will apply the same category to code mapping to the validation data as was performed on the training data


	test_df (Optional[DataFrame]) – if set will apply the same category to code mapping to the testing data as was performed on the training data






	Return type

	Tuple[OrderedDict, OrderedDict]



	Returns

	ordered dictionary mapping categorical features to dictionaries mapping categories to codes
ordered dictionary mapping categorical features to their cardinalities
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lumin.evaluation package


Submodules




lumin.evaluation.ams module


	
lumin.evaluation.ams.calc_ams(s, b, br=0, unc_b=0)

	Compute Approximate Median Significance (https://arxiv.org/abs/1007.1727)


	Parameters

	
	s (float) – signal weight


	b (float) – background weight


	br (float) – background offset bias


	unc_b (float) – fractional systemtatic uncertainty on background






	Return type

	float



	Returns

	Approximate Median Significance if b > 0 else -1










	
lumin.evaluation.ams.calc_ams_torch(s, b, br=0, unc_b=0)

	Compute Approximate Median Significance (https://arxiv.org/abs/1007.1727) using Tensor inputs


	Parameters

	
	s (Tensor) – signal weight


	b (Tensor) – background weight


	br (float) – background offset bias


	unc_b (float) – fractional systemtatic uncertainty on background






	Return type

	Tensor



	Returns

	Approximate Median Significance if b > 0 else 1e-18 * s










	
lumin.evaluation.ams.ams_scan_quick(df, wgt_factor=1, br=0, syst_unc_b=0, pred_name='pred', targ_name='gen_target', wgt_name='gen_weight')

	Scan accross a range of possible prediction thresholds in order to maximise the Approximate Median Significance (https://arxiv.org/abs/1007.1727).
Note that whilst this method is quicker than ams_scan_slow(), it sufferes from float precison.
Not recommended for final evaluation.


	Parameters

	
	df (DataFrame) – DataFrame containing prediction data


	wgt_factor (float) – factor to reweight signal and background weights


	br (float) – background offset bias


	syst_unc_b (float) – fractional systemtatic uncertainty on background


	pred_name (str) – column to use as predictions


	targ_name (str) – column to use as truth labels for signal and background


	wgt_name (str) – column to use as weights for signal and background events






	Return type

	Tuple[float, float]



	Returns

	maximum AMS
prediction threshold corresponding to maximum AMS










	
lumin.evaluation.ams.ams_scan_slow(df, wgt_factor=1, br=0, syst_unc_b=0, use_stat_unc=False, start_cut=0.9, min_events=10, pred_name='pred', targ_name='gen_target', wgt_name='gen_weight', show_prog=True)

	Scan accross a range of possible prediction thresholds in order to maximise the Approximate Median Significance (https://arxiv.org/abs/1007.1727).
Note that whilst this method is slower than ams_scan_quick(), it does not suffer as much from float precison.
Additionally it allows one to account for statistical uncertainty in AMS calculation.


	Parameters

	
	df (DataFrame) – DataFrame containing prediction data


	wgt_factor (float) – factor to reweight signal and background weights


	br (float) – background offset bias


	syst_unc_b (float) – fractional systemtatic uncertainty on background


	use_stat_unc (bool) – whether to account for the statistical uncertainty on the background


	start_cut (float) – minimum prediction to consider; useful for speeding up scan


	min_events (int) – minimum number of background unscaled events required to pass threshold


	pred_name (str) – column to use as predictions


	targ_name (str) – column to use as truth labels for signal and background


	wgt_name (str) – column to use as weights for signal and background events


	show_prog (bool) – whether to display progress and ETA of scan






	Return type

	Tuple[float, float]



	Returns

	maximum AMS
prediction threshold corresponding to maximum AMS
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lumin.inference package


Submodules




lumin.inference.summary_stat module


	
lumin.inference.summary_stat.bin_binary_class_pred(df, max_unc, consider_samples=None, step_sz=0.001, pred_name='pred', sample_name='gen_sample', compact_samples=False, class_name='gen_target', add_pure_signal_bin=False, max_unc_pure_signal=0.1, verbose=True)

	Define bin-edges for binning particle process samples as a function of event class prediction (signal | background) such that the statistical uncertainties on per bin yields are
below max_unc for each considered sample.


	Parameters

	
	df (DataFrame) – DataFrame containing the data


	max_unc (float) – maximum fractional statisitcal uncertainty to allow when defining bins


	consider_samples (Optional[List[str]]) – if set, only listed samples are considered when defining bins


	step_sz (float) – resolution of scan along event prediction


	pred_name (str) – column to use as event class prediction


	sample_name (str) – column to use as particle process fo reach event


	compact_samples (bool) – if true, will not consider samples when computing bin edges, only the class


	class_name (str) – name of column to use as class indicator


	add_pure_signal_bin (bool) – if true will attempt to add a bin which oonly contains signal (class 1) if the fractional bin-fill uncertainty would be less than
max_unc_pure_signal


	max_unc_pure_signal (float) – maximum fractional statisitcal uncertainty to allow when defining pure-signal bins


	verbose (bool) – whether to show progress bar






	Return type

	List[float]



	Returns

	list of bin edges
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lumin.nn package


Subpackages



	lumin.nn.callbacks package

	lumin.nn.data package

	lumin.nn.ensemble package

	lumin.nn.interpretation package

	lumin.nn.losses package

	lumin.nn.metrics package

	lumin.nn.models package

	lumin.nn.training package
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lumin.nn.callbacks package


Submodules




lumin.nn.callbacks.callback module


	
class lumin.nn.callbacks.callback.Callback(model=None, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Bases: lumin.nn.callbacks.abs_callback.AbsCallback

Base callback class from which other callbacks should inherit.


	Parameters

	
	model (Optional[AbsModel]) – model to refer to during training


	plot_settings (PlotSettings) – PlotSettings class









	
set_model(model)

	Sets the callback’s model in order to allow the callback to access and adjust model parameters


	Parameters

	model (AbsModel) – model to refer to during training



	Return type

	None










	
set_plot_settings(plot_settings)

	Sets the plot settings for any plots produced by the callback


	Parameters

	plot_settings (PlotSettings) – PlotSettings class



	Return type

	None
















lumin.nn.callbacks.cyclic_callbacks module


	
class lumin.nn.callbacks.cyclic_callbacks.AbsCyclicCallback(interp, param_range, cycle_mult=1, decrease_param=False, scale=1, model=None, nb=None, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Bases: lumin.nn.callbacks.callback.Callback

Abstract class for callbacks affecting lr or mom


	Parameters

	
	interp (str) – string representation of interpolation function. Either ‘linear’ or ‘cosine’.


	param_range (Tuple[float, float]) – minimum and maximum values for parameter


	cycle_mult (int) – multiplicative factor for adjusting the cycle length after each cycle.
E.g cycle_mult=1 keeps the same cycle length, cycle_mult=2 doubles the cycle length after each cycle.


	decrease_param (bool) – whether to begin by decreasing the parameter, otherwise begin by increasing it


	scale (int) – multiplicative factor for setting the initial number of epochs per cycle.
E.g scale=1 means 1 epoch per cycle, scale=5 means 5 epochs per cycle.


	model (Optional[AbsModel]) – model to refer to during training


	nb (Optional[int]) – number of minibatches (iterations) to expect per epoch


	plot_settings (PlotSettings) – PlotSettings class









	
on_batch_begin(**kargs)

	Computes the new value for the optimiser parameter and returns it


	Return type

	float



	Returns

	new value for optimiser parameter










	
on_batch_end(**kargs)

	Increments the callback’s progress through the cycle


	Return type

	None










	
on_epoch_begin(**kargs)

	Ensures the cycle_end flag is false when the epoch starts


	Return type

	None










	
plot()

	Plots the history of the parameter evolution as a function of iterations


	Return type

	None










	
set_nb(nb)

	Sets the callback’s internal number of iterations per cycle equal to nb*scale


	Parameters

	nb (int) – number of minibatches per epoch



	Return type

	None














	
class lumin.nn.callbacks.cyclic_callbacks.CycleLR(lr_range, interp='cosine', cycle_mult=1, decrease_param='auto', scale=1, model=None, nb=None, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Bases: lumin.nn.callbacks.cyclic_callbacks.AbsCyclicCallback

Callback to cycle learning rate during training according to either:
cosine interpolation for SGDR https://arxiv.org/abs/1608.03983
or linear interpolation for Smith cycling https://arxiv.org/abs/1506.01186


	Parameters

	
	lr_range (Tuple[float, float]) – tuple of initial and final LRs


	interp (str) – ‘cosine’ or ‘linear’ interpolation


	cycle_mult (int) – Multiplicative constant for altering the cycle length after each complete cycle


	decrease_param (Union[str, bool]) – whether to increase or decrease the LR (effectively reverses lr_range order), ‘auto’ selects according to interp


	scale (int) – Multiplicative constant for altering the length of a cycle. 1 corresponds to one cycle = one (sub-)epoch


	model (Optional[AbsModel]) – Model to alter, alternatively call set_model().


	nb (Optional[int]) – Number of batches in a (sub-)epoch


	plot_settings (PlotSettings) – PlotSettings class to control figure appearance









	Examples::
	>>> cosine_lr = CycleLR(lr_range=(0, 2e-3), cycle_mult=2, scale=1,
...                     interp='cosine', nb=100)
>>>
>>> cyclical_lr = CycleLR(lr_range=(2e-4, 2e-3), cycle_mult=1, scale=5,
                          interp='linear', nb=100)










	
on_batch_begin(**kargs)

	Computes the new lr and assignes it to the optimiser


	Return type

	None














	
class lumin.nn.callbacks.cyclic_callbacks.CycleMom(mom_range, interp='cosine', cycle_mult=1, decrease_param='auto', scale=1, model=None, nb=None, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Bases: lumin.nn.callbacks.cyclic_callbacks.AbsCyclicCallback

Callback to cycle momentum (beta 1) during training according to either:
cosine interpolation for SGDR https://arxiv.org/abs/1608.03983
or linear interpolation for Smith cycling https://arxiv.org/abs/1506.01186
By default is set to evolve in opposite direction to learning rate, a la https://arxiv.org/abs/1803.09820


	Parameters

	
	mom_range (Tuple[float, float]) – tuple of initial and final momenta


	interp (str) – ‘cosine’ or ‘linear’ interpolation


	cycle_mult (int) – Multiplicative constant for altering the cycle length after each complete cycle


	decrease_param (Union[str, bool]) – whether to increase or decrease the momentum (effectively reverses mom_range order), ‘auto’ selects according to interp


	scale (int) – Multiplicative constant for altering the length of a cycle. 1 corresponds to one cycle = one (sub-)epoch


	model (Optional[AbsModel]) – Model to alter, alternatively call set_model()


	nb (Optional[int]) – Number of batches in a (sub-)epoch


	plot_settings (PlotSettings) – PlotSettings class to control figure appearance









	Examples::
	>>> cyclical_mom = CycleMom(mom_range=(0.85 0.95), cycle_mult=1,
...                         scale=5, interp='linear', nb=100)










	
on_batch_begin(**kargs)

	Computes the new momentum and assignes it to the optimiser


	Return type

	None














	
class lumin.nn.callbacks.cyclic_callbacks.OneCycle(lengths, lr_range, mom_range=(0.85, 0.95), interp='cosine', model=None, nb=None, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Bases: lumin.nn.callbacks.cyclic_callbacks.AbsCyclicCallback

Callback implementing Smith 1-cycle evolution for lr and momentum (beta_1) https://arxiv.org/abs/1803.09820
Default interpolation uses fastai-style cosine function.
Automatically triggers early stopping on cycle completion.


	Parameters

	
	lengths (Tuple[int, int]) – tuple of number of (sub-)epochs in first and second stages of cycle


	lr_range (List[float]) – list of initial and max LRs and optionally a final LR. If only two LRs supplied, then final LR will be zero.


	mom_range (Tuple[float, float]) – tuple of initial and final momenta


	interp (str) – ‘cosine’ or ‘linear’ interpolation


	model (Optional[AbsModel]) – Model to alter, alternatively call set_model()


	nb (Optional[int]) – Number of batches in a (sub-)epoch


	plot_settings (PlotSettings) – PlotSettings class to control figure appearance









	Examples::
	>>> onecycle = OneCycle(lengths=(15, 30), lr_range=[1e-4, 1e-2],
...                     mom_range=(0.85, 0.95), interp='cosine', nb=100)










	
on_batch_begin(**kargs)

	Computes the new lr and momentum and assignes them to the optimiser


	Return type

	None










	
plot()

	Plots the history of the lr and momentum evolution as a function of iterations












lumin.nn.callbacks.data_callbacks module


	
class lumin.nn.callbacks.data_callbacks.BinaryLabelSmooth(coefs=0, model=None)

	Bases: lumin.nn.callbacks.callback.Callback

Callback for applying label smoothing to binary classes, based on https://arxiv.org/abs/1512.00567
Applies smoothing during both training and inference.


	Parameters

	
	coefs (Union[float, Tuple[float, float]]) – Smoothing coefficients: 0->coef[0] 1->1-coef[1]. if passed float, coef[0]=coef[1]


	model (Optional[AbsModel]) – not used, only for compatability









	Examples::
	>>> lbl_smooth = BinaryLabelSmooth(0.1)
>>>
>>> lbl_smooth = BinaryLabelSmooth((0.1, 0.02))










	
on_epoch_begin(by, **kargs)

	Apply smoothing at train-time


	Return type

	None










	
on_eval_begin(targets, **kargs)

	Apply smoothing at test-time


	Return type

	None














	
class lumin.nn.callbacks.data_callbacks.SequentialReweight(reweight_func, scale=0.1, model=None)

	Bases: lumin.nn.callbacks.callback.Callback


Caution

Experiemntal proceedure



During ensemble training, sequentially reweight training data in last validation fold based on prediction performance of last trained model.
Reweighting highlights data which are easier or more difficult to predict to the next model being trained.


	Parameters

	
	reweight_func (Callable[[Tensor, Tensor], Tensor]) – callable function returning a tensor of same shape as targets, ideally quantifying model-prediction performance


	scale (float) – multiplicative factor for rescaling returned tensor of reweight_func


	model (Optional[AbsModel]) – Model to provide predictions, alternatively call set_model()









	Examples::
	>>> seq_reweight = SequentialReweight(
...     reweight_func=nn.BCELoss(reduction='none'), scale=0.1)










	
on_train_end(fy, val_id, bs=None, **kargs)

	Reweighs the validation fold once training is finished


	Parameters

	
	fy (FoldYielder) – FoldYielder providing the training and validation data


	fold_id – Fold index which was used for validation






	Return type

	None














	
class lumin.nn.callbacks.data_callbacks.SequentialReweightClasses(reweight_func, scale=0.1, model=None)

	Bases: lumin.nn.callbacks.data_callbacks.SequentialReweight


Caution

Experiemntal proceedure



Version of SequentialReweight designed for classification, which renormalises class weights to original weight-sum after reweighting
During ensemble training, sequentially reweight training data in last validation fold based on prediction performance of last trained model.
Reweighting highlights data which are easier or more difficult to predict to the next model being trained.


	Parameters

	
	reweight_func (Callable[[Tensor, Tensor], Tensor]) – callable function returning a tensor of same shape as targets, ideally quantifying model-prediction performance


	scale (float) – multiplicative factor for rescaling returned tensor of reweight_func


	model (Optional[AbsModel]) – Model to provide predictions, alternatively call set_model()









	Examples::
	>>> seq_reweight = SequentialReweight(
...     reweight_func=nn.BCELoss(reduction='none'), scale=0.1)














	
class lumin.nn.callbacks.data_callbacks.BootstrapResample(n_folds, bag_each_time=False, reweight=True, model=None)

	Bases: lumin.nn.callbacks.callback.Callback

Callback for bootstrap sampling new training datasets from original training data during (ensemble) training.


	Parameters

	
	n_folds (int) – the number of folds present in training FoldYielder


	bag_each_time (bool) – whether to sample a new set for each sub-epoch or to use the same sample each time


	reweight (bool) – whether to reweight the sampleed data to mathch the weight sum (per class) of the original data


	model (Optional[AbsModel]) – not used, only for compatability









	Examples::
	>>> bs_resample BootstrapResample(n_folds=len(train_fy))










	
on_epoch_begin(by, **kargs)

	Resamples training data for new epoch


	Parameters

	by (BatchYielder) – BatchYielder providing data for the upcoming epoch



	Return type

	None










	
on_train_begin(**kargs)

	Resets internal parameters to prepare for a new training


	Return type

	None














	
class lumin.nn.callbacks.data_callbacks.ParametrisedPrediction(feats, param_feat, param_val, model=None)

	Bases: lumin.nn.callbacks.callback.Callback

Callback for running predictions for a parametersied network (https://arxiv.org/abs/1601.07913); one which has been trained using one of more inputs which
represent e.g. different hypotheses for the classes such as an unknown mass of some new particle.
In such a scenario, multiple signal datasets could be used for training, with background receiving a random mass. During prediction one then needs to set
these parametrisation features all to the same values to evaluat the model’s response for that hypothesis.
This callback can be passed to the predict method of the model/ensemble to adjust the parametrisation features to the desired values.


	Parameters

	
	feats (List[str]) – list of feature names used during training (in the same order)


	param_feat (Union[List[str], str]) – the feature name which is to be adjusted, or a list of features to adjust


	param_val (Union[List[float], float]) – the value to which to set the paramertisation feature, of the list of values to set the parameterisation features to


	model (Optional[AbsModel]) – unused, purely for compatability, just leave it as None









	Examples::
	>>> mass_param = ParametrisedPrediction(train_feats, 'res_mass', 300)
>>> model.predict(fold_yeilder, pred_name=f'pred_mass_300', callbacks=[mass_param])
>>>
>>> mass_param = ParametrisedPrediction(train_feats, 'res_mass', 300)
>>> spin_param = ParametrisedPrediction(train_feats, 'spin', 1)
>>> model.predict(fold_yeilder, pred_name=f'pred_mass_300', callbacks=[mass_param, spin_param])










	
on_pred_begin(inputs, **kargs)

	Adjusts the data to be passed to the model by setting in place the parameterisation feature to the preset value


	Parameters

	inputs (Union[ndarray, DataFrame, Tensor]) – data which will later be passed to the model



	Return type

	None
















lumin.nn.callbacks.loss_callbacks module


	
class lumin.nn.callbacks.loss_callbacks.GradClip(clip, clip_norm=True, model=None)

	Bases: lumin.nn.callbacks.callback.Callback

Callback for clipping gradients by norm or value.


	Parameters

	
	clip (float) – value to clip at


	clip_norm (bool) – whether to clip according to norm (torch.nn.utils.clip_grad_norm_) or value (torch.nn.utils.clip_grad_value_)


	model (Optional[AbsModel]) – Model with parameters to clip gradients, alternatively call set_model()









	Examples::
	>>> grad_clip = GradClip(1e-5)










	
on_backwards_end(**kargs)

	Clips gradients prior to parameter updates


	Return type

	None
















lumin.nn.callbacks.lsuv_init module

This file contains code modfied from https://github.com/ducha-aiki/LSUV-pytorch which is made available under the following BSD 2-Clause “Simplified” Licence:
Copyright (C) 2017, Dmytro Mishkin
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright


notice, this list of conditions and the following disclaimer.





	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the
distribution.




THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The Apache Licence 2.0 underwhich the majority of the rest of LUMIN is distributed does not apply to the code within this file.


	
class lumin.nn.callbacks.lsuv_init.LsuvInit(needed_std=1.0, std_tol=0.1, max_attempts=10, do_orthonorm=True, verbose=False, model=None)

	Bases: lumin.nn.callbacks.callback.Callback

Applies Layer-Sequential Unit-Variance (LSUV) initialisation to model, as per Mishkin & Matas 2016 https://arxiv.org/abs/1511.06422.
When training begins for the first time, Conv1D, Conv2D, Conv3D, and Linear modules in the model will be LSUV initialised using the BatchYielder
inputs.
This involves initialising the weights with orthonormal matirces and then iteratively scaling them such that the stadndar deviation of the layer outputs is
equal to a desired value, within some tolerance.


	Parameters

	
	needed_std (float) – desired standard deviation of layer outputs


	std_tol (float) – tolerance for matching standard deviation with target


	max_attempts (int) – number of times to attempt weight scaling per layer


	do_orthonorm (bool) – whether to apply orthonormal initialisation first, or rescale the exisiting values


	verbose (bool) – whether to print out details of the rescaling


	model (Optional[AbsModel]) – Model to provide parameters, alternatively call set_model()









	Example::
	>>> lsuv = LsuvInit()
>>>
>>> lsuv = LsuvInit(verbose=True)
>>>
>>> lsuv = LsuvInit(needed_std=0.5, std_tol=0.01, max_attempts=100, do_orthonorm=True)










	
on_epoch_begin(by, **kargs)

	If the LSUV process has yet to run, then it will run using all of the input data provided by the BatchYielder


	Parameters

	by (BatchYielder) – BatchYielder providing data for the upcoming epoch



	Return type

	None










	
on_train_begin(**kargs)

	Sets the callback to initialise the model the first time that on_epoch_begin is called.


	Return type

	None
















lumin.nn.callbacks.model_callbacks module


	
class lumin.nn.callbacks.model_callbacks.SWA(start_epoch, renewal_period=-1, model=None, val_fold=None, cyclic_callback=None, update_on_cycle_end=None, verbose=False, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Bases: lumin.nn.callbacks.model_callbacks.AbsModelCallback

Callback providing Stochastic Weight Averaging based on (https://arxiv.org/abs/1803.05407)
This adapted version allows the tracking of a pair of average models in order to avoid having to hardcode a specific start point for averaging:


	Model average x0 will begin to be tracked start_epoch (sub-)epochs/cycles after training begins.


	cycle_since_replacement is set to 1


	Renewal_period (sub-)epochs/cycles later, a second average x1 will be tracked.


	At the next renewal period, the performance of x0 and x1 will be compared on data contained in val_fold.



	
	If x0 is better than x1:
	
	x1 is replaced by a copy of the current model


	cycle_since_replacement is increased by 1


	renewal_period is multiplied by cycle_since_replacement










	
	Else:
	
	x0 is replaced by x1


	x1 is replaced by a copy of the current model


	cycle_since_replacement is set to 1


	renewal_period is set back to its original value



















Additonally, will optionally (default True) lock-in to any cyclical callbacks to only update at the end of a cycle.


	Parameters

	
	start_epoch (int) – (sub-)epoch/cycle to begin averaging


	renewal_period (int) – How often to check performance of averages, and renew tracking of least performant


	model (Optional[AbsModel]) – Model to provide parameters, alternatively call set_model()


	val_fold (Optional[Dict[str, ndarray]]) – Dictionary containing inputs, targets, and weights (or None) as Numpy arrays


	cyclic_callback (Optional[AbsCyclicCallback]) – Optional for any cyclical callback which is running


	update_on_cycle_end (Optional[bool]) – Whether to lock in to the cyclic callback and only update at the end of a cycle. Default yes, if cyclic callback present.


	verbose (bool) – Whether to print out update information for testing and operation confirmation


	plot_settings (PlotSettings) – PlotSettings class to control figure appearance









	Examples::
	>>> swa = SWA(start_epoch=5, renewal_period=5)










	
get_loss(bs=None, use_weights=True, callbacks=None)

	Evaluates SWA model and returns loss


	Parameters

	
	bs (Optional[int]) – If not None, will evaluate loss in batches, rather than loading whole fold onto device


	use_weights (bool) – Whether to compute weighted loss if weights are present


	callbacks (Optional[List[AbsCallback]]) – list of any callbacks to use during evaluation






	Return type

	float



	Returns

	Loss on validation fold for oldest SWA average










	
on_epoch_begin(**kargs)

	Resets loss to prepare for new epoch


	Return type

	None










	
on_epoch_end(**kargs)

	Checks whether averages should be updated (or reset) and increments counters


	Return type

	None










	
on_train_begin(**kargs)

	Initialises model variables to begin tracking new model averages


	Return type

	None














	
class lumin.nn.callbacks.model_callbacks.AbsModelCallback(model=None, val_fold=None, cyclic_callback=None, update_on_cycle_end=None, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Bases: lumin.nn.callbacks.callback.Callback

Abstract class for callbacks which provide alternative models during training


	Parameters

	
	model (Optional[AbsModel]) – Model to provide parameters, alternatively call set_model()


	val_fold (Optional[Dict[str, ndarray]]) – Dictionary containing inputs, targets, and weights (or None) as Numpy arrays


	cyclic_callback (Optional[AbsCyclicCallback]) – Optional for any cyclical callback which is running


	update_on_cycle_end (Optional[bool]) – Whether to lock in to the cyclic callback and only update at the end of a cycle. Default yes, if cyclic callback present.


	plot_settings (PlotSettings) – PlotSettings class to control figure appearance









	
abstract get_loss(bs=None, use_weights=True, callbacks=None)

	
	Return type

	float










	
set_cyclic_callback(cyclic_callback)

	Sets the cyclical callback to lock into for updating new models


	Return type

	None










	
set_val_fold(val_fold)

	Sets the validation fold used for evaluating new models


	Return type

	None
















lumin.nn.callbacks.opt_callbacks module


	
class lumin.nn.callbacks.opt_callbacks.LRFinder(nb, lr_bounds=[1e-07, 10], model=None, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Bases: lumin.nn.callbacks.callback.Callback

Callback class for Smith learning-rate range test (https://arxiv.org/abs/1803.09820)


	Parameters

	
	nb (int) – number of batches in a (sub-)epoch


	lr_bounds (Tuple[float, float]) – tuple of initial and final LR


	model (Optional[AbsModel]) – Model to alter, alternatively call set_model()


	plot_settings (PlotSettings) – PlotSettings class to control figure appearance









	
get_df()

	Returns a DataFrame of LRs and losses


	Return type

	DataFrame










	
on_batch_end(loss, **kargs)

	Records loss and increments LR


	Parameters

	loss (float) – training loss for most recent batch



	Return type

	None










	
on_train_begin(**kargs)

	Prepares variables and optimiser for new training


	Return type

	None










	
plot(n_skip=0, n_max=None, lim_y=None)

	Plot the loss as a function of the LR.


	Parameters

	
	n_skip (int) – Number of initial iterations to skip in plotting


	n_max (Optional[int]) – Maximum iteration number to plot


	lim_y (Optional[Tuple[float, float]]) – y-range for plotting






	Return type

	None










	
plot_lr()

	Plot the LR as a function of iterations.


	Return type

	None
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lumin.nn.data package


Submodules




lumin.nn.data.batch_yielder module


	
class lumin.nn.data.batch_yielder.BatchYielder(inputs, targets, bs, objective, weights=None, shuffle=True, use_weights=True, bulk_move=True)

	Bases: object

Yields minibatches to model during training. Iteration provides one minibatch as tuple of tensors of inputs, targets, and weights.


	Parameters

	
	inputs (Union[ndarray, Tuple[ndarray, ndarray]]) – input array for (sub-)epoch


	targets (ndarray) – targte array for (sub-)epoch


	bs (int) – batchsize, number of data to include per minibatch


	objective (str) – ‘classification’, ‘multiclass classification’, or ‘regression’. Used for casting target dtype.


	weights (Optional[ndarray]) – Optional weight array for (sub-)epoch


	shuffle (bool) – whether to shuffle the data at the beginning of an iteration


	use_weights (bool) – if passed weights, whether to actually pass them to the model


	bulk_move (bool) – whether to move all data to device at once. Default is true (saves time), but if device has low memory you can set to False.









	
get_inputs(on_device=False)

	
	Return type

	Union[Tensor, Tuple[Tensor, Tensor]]
















lumin.nn.data.fold_yielder module


	
class lumin.nn.data.fold_yielder.FoldYielder(foldfile, cont_feats=None, cat_feats=None, ignore_feats=None, input_pipe=None, output_pipe=None, yield_matrix=True, matrix_pipe=None)

	Bases: object

Interface class for accessing data from foldfiles created by df2foldfile()


	Parameters

	
	foldfile (Union[str, Path, File]) – filename of hdf5 file or opened hdf5 file


	cont_feats (Optional[List[str]]) – list of names of continuous features present in input data, not required if foldfile contains meta data already


	cat_feats (Optional[List[str]]) – list of names of categorical features present in input data, not required if foldfile contains meta data already


	ignore_feats (Optional[List[str]]) – optional list of input features which should be ignored


	input_pipe (Union[str, Pipeline, Path, None]) – optional Pipeline, or filename for pickled Pipeline, which was used for processing the inputs


	output_pipe (Union[str, Pipeline, Path, None]) – optional Pipeline, or filename for pickled Pipeline, which was used for processing the targets


	yield_matrix (bool) – whether to actually yield matrix data if present


	matrix_pipe (Union[str, Pipeline, Path, None]) – preprocessing pipe for matrix data









	Examples::
	>>> fy = FoldYielder('train.h5')
>>>
>>> fy = FoldYielder('train.h5', ignore_feats=['phi'], input_pipe='input_pipe.pkl')
>>>
>>> fy = FoldYielder('train.h5', input_pipe=input_pipe, matrix_pipe=matrix_pipe)
>>>
>>> fy = FoldYielder('train.h5', input_pipe=input_pipe, yield_matrix=False)










	
add_ignore(feats)

	Add features to ignored features.


	Parameters

	feats (List[str]) – list of feature names to ignore



	Return type

	None










	
add_input_pipe(input_pipe)

	Adds an input pipe to the FoldYielder for use when deprocessing data


	Parameters

	input_pipe (Union[str, Pipeline]) – Pipeline which was used for preprocessing the input data or name of pkl file containing Pipeline



	Return type

	None










	
add_input_pipe_from_file(name)

	Adds an input pipe from a pkl file to the FoldYielder for use when deprocessing data


	Parameters

	name (str) – name of pkl file containing Pipeline which was used for preprocessing the input data



	Return type

	None










	
add_matrix_pipe(matrix_pipe)

	Adds an matrix pipe to the FoldYielder for use when deprocessing data


Warning

Deprocessing matrix data is not yet implemented




	Parameters

	matrix_pipe (Union[str, Pipeline]) – Pipeline which was used for preprocessing the input data or name of pkl file containing Pipeline



	Return type

	None










	
add_matrix_pipe_from_file(name)

	Adds an matrix pipe from a pkl file to the FoldYielder for use when deprocessing data


	Parameters

	name (str) – name of pkl file containing Pipeline which was used for preprocessing the matrix data



	Return type

	None










	
add_output_pipe(output_pipe)

	Adds an output pipe to the FoldYielder for use when deprocessing data


	Parameters

	output_pipe (Union[str, Pipeline]) – Pipeline which was used for preprocessing the target data or name of pkl file containing Pipeline



	Return type

	None










	
add_output_pipe_from_file(name)

	Adds an output pipe from a pkl file to the FoldYielder for use when deprocessing data


	Parameters

	name (str) – name of pkl file containing Pipeline which was used for preprocessing the target data



	Return type

	None










	
close()

	Closes the foldfile


	Return type

	None










	
columns()

	Returns list of columns present in foldfile


	Return type

	List[str]



	Returns

	list of columns present in foldfile










	
get_column(column, n_folds=None, fold_idx=None, add_newaxis=False)

	Load column (h5py group) from foldfile. Used for getting arbitrary data which isn’t automatically grabbed by other methods.


	Parameters

	
	column (str) – name of h5py group to get


	n_folds (Optional[int]) – number of folds to get data from. Default all folds. Not compatable with fold_idx


	fold_idx (Optional[int]) – Only load group from a single, specified fold. Not compatable with n_folds


	add_newaxis (bool) – whether expand shape of returned data if data shape is ()






	Return type

	Optional[ndarray]



	Returns

	Numpy array of column data










	
get_data(n_folds=None, fold_idx=None)

	Get data for single, specified fold or several of folds. Data consists of dictionary of inputs, targets, and weights.
Does not account for ignored features.
Inputs are passed through np.nan_to_num to deal with nans and infs.


	Parameters

	
	n_folds (Optional[int]) – number of folds to get data from. Default all folds. Not compatable with fold_idx


	fold_idx (Optional[int]) – Only load group from a single, specified fold. Not compatable with n_folds






	Return type

	Dict[str, ndarray]



	Returns

	tuple of inputs, targets, and weights as Numpy arrays










	
get_df(pred_name='pred', targ_name='targets', wgt_name='weights', n_folds=None, fold_idx=None, inc_inputs=False, inc_ignore=False, deprocess=False, verbose=True, suppress_warn=False, nan_to_num=False, inc_matrix=False)

	Get a Pandas DataFrameof the data in the foldfile. Will add columns for inputs (if requested), targets, weights, and predictions (if present)


	Parameters

	
	pred_name (str) – name of prediction group


	targ_name (str) – name of target group


	wgt_name (str) – name of weight group


	n_folds (Optional[int]) – number of folds to get data from. Default all folds. Not compatable with fold_idx


	fold_idx (Optional[int]) – Only load group from a single, specified fold. Not compatable with n_folds


	inc_inputs (bool) – whether to include input data


	inc_ignore (bool) – whether to include ignored features


	deprocess (bool) – whether to deprocess inputs and targets if pipelines have been


	verbose (bool) – whether to print the number of datapoints loaded


	suppress_warn (bool) – whether to supress the warning about missing columns


	nan_to_num (bool) – whether to pass input data through np.nan_to_num


	inc_matrix (bool) – whether to include flattened matrix data in output, if present






	Return type

	DataFrame



	Returns

	Pandas DataFrame with requested data










	
get_fold(idx)

	Get data for single fold. Data consists of dictionary of inputs, targets, and weights.
Accounts for ignored features.
Inputs, except for matrix data, are passed through np.nan_to_num to deal with nans and infs.


	Parameters

	idx (int) – fold index to load



	Return type

	Dict[str, ndarray]



	Returns

	tuple of inputs, targets, and weights as Numpy arrays










	
get_ignore()

	Returns list of ignored features


	Return type

	List[str]



	Returns

	Features removed from training data










	
get_use_cat_feats()

	Returns list of categorical features which will be present in training data, accounting for ignored features.


	Return type

	List[str]



	Returns

	List of categorical features










	
get_use_cont_feats()

	Returns list of continuous features which will be present in training data, accounting for ignored features.


	Return type

	List[str]



	Returns

	List of continuous features










	
save_fold_pred(pred, fold_idx, pred_name='pred')

	Save predictions for given fold as a new column in the foldfile


	Parameters

	
	pred (ndarray) – array of predictions in the same order as data appears in the file


	fold_idx (int) – index for fold


	pred_name (str) – name of column to save predictions under






	Return type

	None














	
class lumin.nn.data.fold_yielder.HEPAugFoldYielder(foldfile, cont_feats=None, cat_feats=None, ignore_feats=None, targ_feats=None, rot_mult=2, random_rot=False, reflect_x=False, reflect_y=True, reflect_z=True, train_time_aug=True, test_time_aug=True, input_pipe=None, output_pipe=None, yield_matrix=True, matrix_pipe=None)

	Bases: lumin.nn.data.fold_yielder.FoldYielder

Specialised version of FoldYielder providing HEP specific data augmetation at train and test time.


	Parameters

	
	foldfile (Union[str, Path, File]) – filename of hdf5 file or opened hdf5 file


	cont_feats (Optional[List[str]]) – list of names of continuous features present in input data, not required if foldfile contains meta data already


	cat_feats (Optional[List[str]]) – list of names of categorical features present in input data, not required if foldfile contains meta data already


	ignore_feats (Optional[List[str]]) – optional list of input features which should be ignored


	targ_feats (Optional[List[str]]) – optional list of target features to also be transformed


	rot_mult (int) – number of rotations of event in phi to make at test-time (currently must be even).
Greater than zero will also apply random rotations during train-time


	random_rot (bool) – whether test-time rotation angles should be random or in steps of 2pi/rot_mult


	reflect_x (bool) – whether to reflect events in x axis at train and test time


	reflect_y (bool) – whether to reflect events in y axis at train and test time


	reflect_z (bool) – whether to reflect events in z axis at train and test time


	train_time_aug (bool) – whether to apply augmentations at train time


	test_time_aug (bool) – whether to apply augmentations at test time


	input_pipe (Optional[Pipeline]) – optional Pipeline, or filename for pickled Pipeline, which was used for processing the inputs


	output_pipe (Optional[Pipeline]) – optional Pipeline, or filename for pickled Pipeline, which was used for processing the targets


	yield_matrix (bool) – whether to actually yield matrix data if present


	matrix_pipe (Union[str, Pipeline, None]) – preprocessing pipe for matrix data









	Examples::
	>>> fy = HEPAugFoldYielder('train.h5',
...                        cont_feats=['pT','eta','phi','mass'],
...                        rot_mult=2, reflect_y=True, reflect_z=True,
...                        input_pipe='input_pipe.pkl')










	
get_fold(idx)

	Get data for single fold applying random train-time data augmentaion. Data consists of dictionary of inputs, targets, and weights.
Accounts for ignored features.
Inputs, except for matrix data, are passed through np.nan_to_num to deal with nans and infs.


	Parameters

	idx (int) – fold index to load



	Return type

	Dict[str, ndarray]



	Returns

	tuple of inputs, targets, and weights as Numpy arrays










	
get_test_fold(idx, aug_idx)

	Get test data for single fold applying test-time data augmentaion. Data consists of dictionary of inputs, targets, and weights.
Accounts for ignored features.
Inputs, except for matrix data, are passed through np.nan_to_num to deal with nans and infs.


	Parameters

	
	idx (int) – fold index to load


	aug_idx (int) – index for the test-time augmentaion (ignored if random test-time augmentation requested)






	Return type

	Dict[str, ndarray]



	Returns

	tuple of inputs, targets, and weights as Numpy arrays
















Module contents







          

      

      

    

  

    
      
          
            
  
lumin.nn.ensemble package


Submodules




lumin.nn.ensemble.ensemble module


	
class lumin.nn.ensemble.ensemble.Ensemble(input_pipe=None, output_pipe=None, model_builder=None)

	Bases: lumin.nn.ensemble.abs_ensemble.AbsEnsemble

Standard class for building an ensemble of collection of trained networks producedd by fold_train_ensemble()
Input and output pipelines can be added. to provide easy saving and loaded of exported ensembles.
Currently, the input pipeline is not used, so input data is expected to be preprocessed.
However the output pipeline will be used to deprocess model predictions.

Once instanciated, lumin.nn.ensemble.ensemble.Ensemble.build_ensemble() or :meth:load should be called. Alternatively, class_methods lumin.nn.ensemble.ensemble.Ensemble.from_save() or lumin.nn.ensemble.ensemble.Ensemble.from_results() may be used.


	Parameters

	
	input_pipe (Optional[Pipeline]) – Optional input pipeline, alternatively call lumin.nn.ensemble.ensemble.Ensemble.add_input_pipe()


	output_pipe (Optional[Pipeline]) – Optional output pipeline, alternatively call lumin.nn.ensemble.ensemble.Ensemble.add_ouput_pipe()


	model_builder (Optional[ModelBuilder]) – Optional ModelBuilder for constructing models from saved weights.









	Examples::
	>>> ensemble = Ensemble()
>>>
>>> ensemble = Ensemble(input_pipe, output_pipe, model_builder)










	
add_input_pipe(pipe)

	Add input pipeline for saving


	Parameters

	pipe (Pipeline) – pipeline used for preprocessing input data



	Return type

	None










	
add_output_pipe(pipe)

	Add output pipeline for saving


	Parameters

	pipe (Pipeline) – pipeline used for preprocessing target data



	Return type

	None










	
build_ensemble(results, size, model_builder, metric='loss', weighting='reciprocal', higher_metric_better=False, snapshot_args=None, location=PosixPath('train_weights'), verbose=True)

	Load up an instantiated Ensemble with outputs of fold_train_ensemble()


	Parameters

	
	results (List[Dict[str, float]]) – results saved/returned by fold_train_ensemble()


	size (int) – number of models to load as ranked by metric


	model_builder (ModelBuilder) – ModelBuilder used for building Model from saved models


	metric (str) – metric name listed in results to use for ranking and weighting trained models


	weighting (str) – ‘reciprocal’ or ‘uniform’ how to weight model predictions during predicition.
‘reciprocal’ = models weighted by 1/metric
‘uniform’ = models treated with equal weighting


	higher_metric_better (bool) – whether metric should be maximised or minimised


	snapshot_args (Optional[Dict[str, Any]]) – Dictionary potentially containing:
‘cycle_losses’: returned/save by fold_train_ensemble() when using an AbsCyclicCallback
‘patience’: patience value that was passed to fold_train_ensemble()
‘n_cycles’: number of cycles to load per model
‘load_cycles_only’: whether to only load cycles, or also the best performing model
‘weighting_pwr’: weight cycles according to (n+1)**weighting_pwr, where n is the number of cycles loaded so far.


Models are loaded youngest to oldest







	location (Path) – Path to save location passed to fold_train_ensemble()


	verbose (bool) – whether to print out information of models loaded









	Examples::
	>>> ensemble.build_ensemble(results, 10, model_builder,
...                         location=Path('train_weights'))
>>>
>>> ensemble.build_ensemble(
...     results, 1,  model_builder,
...     location=Path('train_weights'),
...     snapshot_args={'cycle_losses':cycle_losses,
...                    'patience':patience,
...                    'n_cycles':8,
...                    'load_cycles_only':True,
...                    'weighting_pwr':0})










	Return type

	None










	
export2onnx(base_name, bs=1)

	Export all Model contained in Ensemble to ONNX format.
Note that ONNX expects a fixed batch size (bs) which is the number of datapoints your wish to pass through the model concurrently.


	Parameters

	
	base_name (str) – Exported models will be called {base_name}_{model_num}.onnx


	bs (int) – batch size for exported models






	Return type

	None










	
export2tfpb(base_name, bs=1)

	Export all Model contained in Ensemble to Tensorflow ProtocolBuffer format, via ONNX.
Note that ONNX expects a fixed batch size (bs) which is the number of datapoints your wish to pass through the model concurrently.


	Parameters

	
	base_name (str) – Exported models will be called {base_name}_{model_num}.pb


	bs (int) – batch size for exported models






	Return type

	None










	
classmethod from_models(models, weights=None, results=None, input_pipe=None, output_pipe=None, model_builder=None)

	Instantiate Ensemble from a list of Model,
and the associated ModelBuilder.


	Parameters

	
	models (List[AbsModel]) – list of Model


	weights (Union[ndarray, List[float], None]) – Optional list of weights, otherwise models will be weighted uniformly


	results (Optional[List[Dict[str, float]]]) – Optional results saved/returned by fold_train_ensemble()


	input_pipe (Optional[Pipeline]) – Optional input pipeline, alternatively call lumin.nn.ensemble.ensemble.Ensemble.add_input_pipe()


	output_pipe (Optional[Pipeline]) – Optional output pipeline, alternatively call lumin.nn.ensemble.ensemble.Ensemble.add_ouput_pipe()


	model_builder (Optional[ModelBuilder]) – Optional ModelBuilder for constructing models from saved weights.






	Return type

	AbsEnsemble



	Returns

	Built Ensemble






	Examples::
	>>> ensemble = Ensemble.from_models(models)
>>>
>>> ensemble = Ensemble.from_models(models, weights)
>>>
>>> ensemble = Ensemble(models, weights, input_pipe, output_pipe, model_builder)














	
classmethod from_results(results, size, model_builder, metric='loss', weighting='reciprocal', higher_metric_better=False, snapshot_args=None, location=PosixPath('train_weights'), verbose=True)

	Instantiate Ensemble from a outputs of fold_train_ensemble().
If cycle models are loaded, then only uniform weighting between models is supported.


	Parameters

	
	results (List[Dict[str, float]]) – results saved/returned by fold_train_ensemble()


	size (int) – number of models to load as ranked by metric


	model_builder (ModelBuilder) – ModelBuilder used for building Model from saved models


	metric (str) – metric name listed in results to use for ranking and weighting trained models


	weighting (str) – ‘reciprocal’ or ‘uniform’ how to weight model predictions during predicition.
‘reciprocal’ = models weighted by 1/metric
‘uniform’ = models treated with equal weighting


	higher_metric_better (bool) – whether metric should be maximised or minimised


	snapshot_args (Optional[Dict[str, Any]]) – Dictionary potentially containing:
‘cycle_losses’: returned/save by fold_train_ensemble() when using an AbsCyclicCallback
‘patience’: patience value that was passed to fold_train_ensemble()
‘n_cycles’: number of cycles to load per model
‘load_cycles_only’: whether to only load cycles, or also the best performing model
‘weighting_pwr’: weight cycles according to (n+1)**weighting_pwr, where n is the number of cycles loaded so far.


Models are loaded youngest to oldest







	location (Path) – Path to save location passed to fold_train_ensemble()


	verbose (bool) – whether to print out information of models loaded






	Return type

	AbsEnsemble



	Returns

	Built Ensemble






	Examples::
	>>> ensemble = Ensemble.from_results(results, 10, model_builder,
...                                  location=Path('train_weights'))
>>>
>>> ensemble = Ensemble.from_results(
...     results, 1,  model_builder,
...     location=Path('train_weights'),
...     snapshot_args={'cycle_losses':cycle_losses,
...                    'patience':patience,
...                    'n_cycles':8,
...                    'load_cycles_only':True,
...                    'weighting_pwr':0})














	
classmethod from_save(name)

	Instantiate Ensemble from a saved Ensemble


	Parameters

	name (str) – base filename of ensemble



	Return type

	AbsEnsemble



	Returns

	Loaded Ensemble






	Examples::
	>>> ensemble = Ensemble.from_save('weights/ensemble')














	
get_feat_importance(fy, eval_metric=None)

	Call get_ensemble_feat_importance(),
passing this Ensemble and provided arguments


	Parameters

	
	fy (FoldYielder) – FoldYielder interfacing to data on which to evaluate importance


	eval_metric (Optional[EvalMetric]) – Optional EvalMetric to use for quantifying performance






	Return type

	DataFrame










	
load(name)

	Load an instantiated Ensemble with weights and Model from save.


	Arguments;
	name: base name for saved objects



	Examples::
	>>> ensemble.load('weights/ensemble')










	Return type

	None










	
static load_trained_model(model_idx, model_builder, name='train_weights/train_')

	Load trained model from save file of the form {name}{model_idx}.h5


	Arguments
	model_idx: index of model to load
model_builder: ModelBuilder used to build the model
name: base name of file from which to load model






	Return type

	Model



	Returns

	Model loaded from save










	
predict(inputs, n_models=None, pred_name='pred', callbacks=None, verbose=True, bs=None)

	Compatability method for predicting data contained in either a Numpy array or a FoldYielder
Will either pass inputs to lumin.nn.ensemble.ensemble.Ensemble.predict_array() or lumin.nn.ensemble.ensemble.Ensemble.predict_folds().


	Parameters

	
	inputs (Union[ndarray, FoldYielder, List[ndarray]]) – either a FoldYielder interfacing with the input data, or the input data as an array


	n_models (Optional[int]) – number of models to use in predictions as ranked by the metric which was used when constructing the
Ensemble.
By default, entire ensemble is used.


	pred_name (str) – name for new group of predictions if passed a FoldYielder


	callbacks (Optional[List[AbsCallback]]) – list of any callbacks to use during evaluation


	verbose (bool) – whether to print average predicition timings


	bs (Optional[int]) – if not None, will run prediction in batches of specified size to save of memory






	Return type

	Union[None, ndarray]



	Returns

	If passed a Numpy array will return predictions.






	Examples::
	>>> preds = ensemble.predict(input_array)
>>>
>>> ensemble.predict(test_fy)














	
predict_array(arr, n_models=None, parent_bar=None, display=True, callbacks=None, bs=None)

	Apply ensemble to Numpy array and get predictions. If an output pipe has been added to the ensemble, then the predictions will be deprocessed.
Inputs are expected to be preprocessed; i.e. any input pipe added to the ensemble is not used.


	Parameters

	
	arr (Union[ndarray, Tuple[ndarray, ndarray]]) – input data


	n_models (Optional[int]) – number of models to use in predictions as ranked by the metric which was used when constructing the Ensemble.
By default, entire ensemble is used.


	parent_bar (Optional[ConsoleMasterBar]) – not used when calling the method directly


	display (bool) – whether to display a progress bar for model evaluations


	callbacks (Optional[List[AbsCallback]]) – list of any callbacks to use during evaluation


	bs (Optional[int]) – if not None, will run prediction in batches of specified size to save of memory






	Return type

	ndarray



	Returns

	Numpy array of predictions






	Examples::
	>>> preds = ensemble.predict_array(inputs)














	
predict_folds(fy, n_models=None, pred_name='pred', callbacks=None, verbose=True, bs=None)

	Apply ensemble to data accessed by a FoldYielder and save predictions as a new group per fold in the foldfile.
If an output pipe has been added to the ensemble, then the predictions will be deprocessed.
Inputs are expected to be preprocessed; i.e. any input pipe added to the ensemble is not used.
If foldyielder has test-time augmentation, then predictions will be averaged over all augmentated forms of the data.


	Parameters

	
	fy (FoldYielder) – FoldYielder interfacing with the input data


	n_models (Optional[int]) – number of models to use in predictions as ranked by the metric which was used when constructing the Ensemble.
By default, entire ensemble is used.


	pred_name (str) – name for new group of predictions


	callbacks (Optional[List[AbsCallback]]) – list of any callbacks to use during evaluation


	verbose (bool) – whether to print average prediction timings


	bs (Optional[int]) – if not None, will run prediction in batches of specified size to save of memory









	Examples::
	>>> ensemble.predict_array(test_fy, pred_name='pred_tta')










	Return type

	None










	
save(name, feats=None, overwrite=False)

	Save ensemble and associated objects


	Parameters

	
	name (str) – base name for saved objects


	feats (Optional[Any]) – optional list of input features


	overwrite (bool) – if existing objects are found, whether to overwrite them









	Examples::
	>>> ensemble.save('weights/ensemble')
>>>
>>> ensemble.save('weights/ensemble', ['pt','eta','phi'])










	Return type

	None
















Module contents







          

      

      

    

  

    
      
          
            
  
lumin.nn.interpretation package


Submodules




lumin.nn.interpretation.features module


	
lumin.nn.interpretation.features.get_nn_feat_importance(model, fy, eval_metric=None, pb_parent=None, plot=True, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Compute permutation importance of features used by a Model on provided data using either loss or an
EvalMetric to quantify performance.
Returns bootstrapped mean importance from sample constructed by computing importance for each fold in fy.


	Parameters

	
	model (AbsModel) – Model to use to evaluate feature importance


	fy (FoldYielder) – FoldYielder interfacing to data used to train model


	eval_metric (Optional[EvalMetric]) – Optional EvalMetric to use to quantify performance in place of loss


	pb_parent (Optional[ConsoleMasterBar]) – Not used if calling method directly


	plot (bool) – whetehr to plot resulting feature importances


	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances


	settings (PlotSettings) – PlotSettings class to control figure appearance






	Return type

	DataFrame



	Returns

	Pandas DataFrame containing mean importance and associated uncertainty for each feature






	Examples::
	>>> fi = get_nn_feat_importance(model, train_fy)
>>>
>>> fi = get_nn_feat_importance(model, train_fy, savename='feat_import')
>>>
>>> fi = get_nn_feat_importance(model, train_fy,
...                             eval_metric=AMS(n_total=100000))














	
lumin.nn.interpretation.features.get_ensemble_feat_importance(ensemble, fy, eval_metric=None, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Compute permutation importance of features used by an Ensemble on provided data using either loss or an
EvalMetric to quantify performance.
Returns bootstrapped mean importance from sample constructed by computing importance for each Model in ensemble.


	Parameters

	
	ensemble (AbsEnsemble) – Ensemble to use to evaluate feature importance


	fy (FoldYielder) – FoldYielder interfacing to data used to train models in ensemble


	eval_metric (Optional[EvalMetric]) – Optional EvalMetric to use to quantify performance in place of loss


	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances


	settings (PlotSettings) – PlotSettings class to control figure appearance






	Return type

	DataFrame



	Returns

	Pandas DataFrame containing mean importance and associated uncertainty for each feature






	Examples::
	>>> fi = get_ensemble_feat_importance(ensemble, train_fy)
>>>
>>> fi = get_ensemble_feat_importance(ensemble, train_fy
...                                   savename='feat_import')
>>>
>>> fi = get_ensemble_feat_importance(ensemble, train_fy,
...                                   eval_metric=AMS(n_total=100000))
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lumin.nn.losses package


Submodules




lumin.nn.losses.basic_weighted module


	
class lumin.nn.losses.basic_weighted.WeightedMSE(weight=None)

	Bases: torch.nn.modules.loss.MSELoss

Class for computing Mean Squared-Error loss with optional weights per prediction.
For compatability with using basic PyTorch losses, weights are passed during initialisation rather than when computing the loss.


	Parameters

	weight (Optional[Tensor]) – sample weights as PyTorch Tensor, to be used with data to be passed when computing the loss






	Examples::
	>>> loss = WeightedMSE()
>>>
>>> loss = WeightedMSE(weights)










	
forward(input, target)

	Evaluate loss for given predictions


	Parameters

	
	input (Tensor) – prediction tensor


	target (Tensor) – target tensor






	Return type

	Tensor



	Returns

	(weighted) loss














	
class lumin.nn.losses.basic_weighted.WeightedMAE(weight=None)

	Bases: torch.nn.modules.loss.L1Loss

Class for computing Mean Absolute-Error loss with optional weights per prediction.
For compatability with using basic PyTorch losses, weights are passed during initialisation rather than when computing the loss.


	Parameters

	weight (Optional[Tensor]) – sample weights as PyTorch Tensor, to be used with data to be passed when computing the loss






	Examples::
	>>> loss = WeightedMAE()
>>>
>>> loss = WeightedMAE(weights)










	
forward(input, target)

	Evaluate loss for given predictions


	Parameters

	
	input (Tensor) – prediction tensor


	target (Tensor) – target tensor






	Return type

	Tensor



	Returns

	(weighted) loss














	
class lumin.nn.losses.basic_weighted.WeightedCCE(weight=None)

	Bases: torch.nn.modules.loss.NLLLoss

Class for computing Categorical Cross-Entropy loss with optional weights per prediction.
For compatability with using basic PyTorch losses, weights are passed during initialisation rather than when computing the loss.


	Parameters

	weight (Optional[Tensor]) – sample weights as PyTorch Tensor, to be used with data to be passed when computing the loss






	Examples::
	>>> loss = WeightedCCE()
>>>
>>> loss = WeightedCCE(weights)










	
forward(input, target)

	Evaluate loss for given predictions


	Parameters

	
	input (Tensor) – prediction tensor


	target (Tensor) – target tensor






	Return type

	Tensor



	Returns

	(weighted) loss
















lumin.nn.losses.hep_losses module


	
class lumin.nn.losses.hep_losses.SignificanceLoss(weight, sig_wgt=<class 'float'>, bkg_wgt=<class 'float'>, func=typing.Callable[[torch.Tensor, torch.Tensor], torch.Tensor])

	Bases: torch.nn.modules.module.Module

General class for implementing significance-based loss functions, e.g. Asimov Loss (https://arxiv.org/abs/1806.00322).
For compatability with using basic PyTorch losses, event weights are passed during initialisation rather than when computing the loss.


	Parameters

	
	weight (Tensor) – sample weights as PyTorch Tensor, to be used with data to be passed when computing the loss


	sig_wgt – total weight of signal events


	bkg_wgt – total weight of background events


	func – callable which returns a float based on signal and background weights









	Examples::
	>>> loss = SignificanceLoss(weight, sig_weight=sig_weight,
...                         bkg_weight=bkg_weight, func=calc_ams_torch)
>>>
>>> loss = SignificanceLoss(weight, sig_weight=sig_weight,
...                         bkg_weight=bkg_weight,
...                         func=partial(calc_ams_torch, br=10))










	
forward(input, target)

	Evaluate loss for given predictions


	Parameters

	
	input (Tensor) – prediction tensor


	target (Tensor) – target tensor






	Return type

	Tensor



	Returns

	(weighted) loss
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lumin.nn.metrics package


Submodules




lumin.nn.metrics.class_eval module


	
class lumin.nn.metrics.class_eval.AMS(n_total, wgt_name, targ_name='targets', br=0, syst_unc_b=0, use_quick_scan=True)

	Bases: lumin.nn.metrics.eval_metric.EvalMetric

Class to compute maximum Approximate Median Significance (https://arxiv.org/abs/1007.1727) using classifier which directly predicts the class of data in a
binary classifiaction problem.
AMS is computed on a single fold of data provided by a FoldYielder and automatically reweights data by event
multiplicity to account missing weights.


	Parameters

	
	n_total (int) – total number of events in entire data set


	wgt_name (str) – name of weight group in fold file to use. N.B. if you have reweighted to balance classes, be sure to use the un-reweighted weights.


	targ_name (str) – name of target group in fold file


	br (float) – constant bias offset for background yield


	syst_unc_b (float) – fractional systematic uncertainty on background yield


	use_quick_scan (bool) – whether to optimise AMS by the ams_scan_quick() method (fast but suffers floating point precision)
if False use ams_scan_slow() (slower but more accurate)









	Examples::
	>>> ams_metric = AMS(n_total=250000, br=10, wgt_name='gen_orig_weight')
>>>
>>> ams_metric = AMS(n_total=250000, syst_unc_b=0.1,
...                  wgt_name='gen_orig_weight', use_quick_scan=False)










	
evaluate(fy, idx, y_pred)

	Compute maximum AMS on fold using provided predictions.


	Parameters

	
	fy (FoldYielder) – FoldYielder interfacing to data


	idx (int) – fold index corresponding to fold for which y_pred was computed


	y_pred (ndarray) – predictions for fold






	Return type

	float



	Returns

	Maximum AMS computed on reweighted data from fold






	Examples::
	>>> ams = ams_metric.evaluate(train_fy, val_id, val_preds)


















	
class lumin.nn.metrics.class_eval.MultiAMS(n_total, wgt_name, targ_name, zero_preds, one_preds, br=0, syst_unc_b=0, use_quick_scan=True)

	Bases: lumin.nn.metrics.class_eval.AMS

Class to compute maximum Approximate Median Significance (https://arxiv.org/abs/1007.1727) using classifier which predicts the class of data in a multiclass
classifiaction problem which can be reduced to a binary classification problem
AMS is computed on a single fold of data provided by a FoldYielder and automatically reweights data by event
multiplicity to account missing weights.


	Parameters

	
	n_total (int) – total number of events in entire data set


	wgt_name (str) – name of weight group in fold file to use. N.B. if you have reweighted to balance classes, be sure to use the un-reweighted weights.


	targ_name (str) – name of target group in fold file which indicates whether the event is signal or background


	zero_preds (List[str]) – list of predicted classes which correspond to class 0 in the form pred_[i], where i is a NN output index


	one_preds (List[str]) – list of predicted classes which correspond to class 1 in the form pred_[i], where i is a NN output index


	br (float) – constant bias offset for background yield


	syst_unc_b (float) – fractional systematic uncertainty on background yield


	use_quick_scan (bool) – whether to optimise AMS by the ams_scan_quick() method (fast but suffers floating point precision)
if False use ams_scan_slow() (slower but more accurate)









	Examples::
	>>> ams_metric = MultiAMS(n_total=250000, br=10, targ_name='gen_target',
...                       wgt_name='gen_orig_weight',
...                       zero_preds=['pred_0', 'pred_1', 'pred_2'],
...                       one_preds=['pred_3'])
>>>
>>> ams_metric = MultiAMS(n_total=250000, syst_unc_b=0.1,
...                       targ_name='gen_target',
...                       wgt_name='gen_orig_weight',
...                       use_quick_scan=False,
...                       zero_preds=['pred_0', 'pred_1', 'pred_2'],
...                       one_preds=['pred_3'])










	
evaluate(fy, idx, y_pred)

	Compute maximum AMS on fold using provided predictions.


	Parameters

	
	fy (FoldYielder) – FoldYielder interfacing to data


	idx (int) – fold index corresponding to fold for which y_pred was computed


	y_pred (ndarray) – predictions for fold






	Return type

	float



	Returns

	Maximum AMS computed on reweighted data from fold






	Examples::
	>>> ams = ams_metric.evaluate(train_fy, val_id, val_preds)


















	
class lumin.nn.metrics.class_eval.BinaryAccuracy(threshold=0.5, targ_name='targets', wgt_name=None)

	Bases: lumin.nn.metrics.eval_metric.EvalMetric

Computes and returns the accuracy of a single-output model for binary classification tasks.


	Parameters

	
	threshold (float) – minimum value of model prediction that will be considered a prediction of class 1. Values below this threshold will be considered predictions
of class 0. Default = 0.5.


	wgt_name (Optional[str]) – name of weight group in fold file to use.


	targ_name (str) – name of target group in fold file which indicates whether the event is class 0 or 1









	Examples::
	>>> acc_metric = BinaryAccuracy()
>>>
>>> acc_metric = BinaryAccuracy(threshold=0.8, wgt_name='weights')










	
evaluate(fy, idx, y_pred)

	Computes the (weighted) accuracy for a set of targets and predictions for a given threshold.


	Parameters

	
	fy (FoldYielder) – FoldYielder interfacing to data


	idx (int) – fold index corresponding to fold for which y_pred was computed


	y_pred (ndarray) – predictions for fold






	Return type

	float



	Returns

	The (weighted) accuracy for the specified threshold






	Examples::
	>>> acc = acc_metric.evaluate(train_fy, val_id, val_preds)


















	
class lumin.nn.metrics.class_eval.RocAucScore(average='macro', max_fpr=None, multi_class='raise', targ_name='targets', wgt_name=None)

	Bases: lumin.nn.metrics.eval_metric.EvalMetric

Computes and returns the area under the Receiver Operator Characteristic curve (ROC AUC) of a classifier model.


	Parameters

	
	average (Optional[str]) – As per scikit-learn. {‘micro’, ‘macro’, ‘samples’, ‘weighted’} or None, default=’macro’
If None, the scores for each class are returned. Otherwise,
this determines the type of averaging performed on the data:
Note: multiclass ROC AUC currently only handles the ‘macro’ and
‘weighted’ averages.


	'micro':
	Calculate metrics globally by considering each element of the label
indicator matrix as a label.



	'macro':
	Calculate metrics for each label, and find their unweighted
mean.  This does not take label imbalance into account.



	'weighted':
	Calculate metrics for each label, and find their average, weighted
by support (the number of true instances for each label).



	'samples':
	Calculate metrics for each instance, and find their average.





Will be ignored when y_true is binary.




	max_fpr (Optional[float]) – As per scikit-learn. float > 0 and <= 1, default=None
If not None, the standardized partial AUC over the range
[0, max_fpr] is returned. For the multiclass case, max_fpr,
should be either equal to None or 1.0 as AUC ROC partial
computation currently is not supported for multiclass.


	multi_class (str) – As per scikit-learn. {‘raise’, ‘ovr’, ‘ovo’}, default=’raise’
Multiclass only. Determines the type of configuration to use. The
default value raises an error, so either 'ovr' or 'ovo' must be
passed explicitly.


	'ovr':
	Computes the AUC of each class against the rest. This
treats the multiclass case in the same way as the multilabel case.
Sensitive to class imbalance even when average == 'macro',
because class imbalance affects the composition of each of the
‘rest’ groupings.



	'ovo':
	Computes the average AUC of all possible pairwise combinations of
classes. Insensitive to class imbalance when
average == 'macro'.








	wgt_name (Optional[str]) – name of weight group in fold file to use.


	targ_name (str) – name of target group in fold file which indicates whether the event is class 0 or 1









	Examples::
	>>> auc_metric = RocAucScore()
>>>
>>> auc_metric = RocAucScore(wgt_name='weights')
>>>
>>> auc_metric = RocAucScore(max_fpr=0.2, wgt_name='weights')
>>>
>>> auc_metric = RocAucScore(multi_class='ovo', wgt_name='weights')










	
evaluate(fy, idx, y_pred)

	Computes the (weighted) (averaged) ROC AUC for a set of targets and predictions.


	Parameters

	
	fy (FoldYielder) – FoldYielder interfacing to data


	idx (int) – fold index corresponding to fold for which y_pred was computed


	y_pred (ndarray) – predictions for fold






	Return type

	float



	Returns

	The (weighted) (averaged) ROC AUC for the specified threshold






	Examples::
	>>> auc = auc_metric.evaluate(train_fy, val_id, val_preds)




















lumin.nn.metrics.eval_metric module


	
class lumin.nn.metrics.eval_metric.EvalMetric(targ_name='targets', wgt_name=None)

	Bases: abc.ABC

Abstract class for evaluating performance of a model using some metric


	Parameters

	
	targ_name (str) – name of group in fold file containing regression targets


	wgt_name (Optional[str]) – name of group in fold file containing datapoint weights









	
abstract evaluate(fy, idx, y_pred)

	Evaluate the required metric for a given fold and set of predictions


	Parameters

	
	fy (FoldYielder) – FoldYielder interfacing to data


	idx (int) – fold index corresponding to fold for which y_pred was computed


	y_pred (ndarray) – predictions for fold






	Return type

	float



	Returns

	metric value










	
get_df(fy, idx, y_pred)

	Returns a DataFrame for the given fold containing targets, weights, and predictions


	Parameters

	
	fy (FoldYielder) – FoldYielder interfacing to data


	idx (int) – fold index corresponding to fold for which y_pred was computed


	y_pred (ndarray) – predictions for fold






	Return type

	DataFrame



	Returns

	DataFrame for the given fold containing targets, weights, and predictions
















lumin.nn.metrics.reg_eval module


	
class lumin.nn.metrics.reg_eval.RegPull(return_mean, use_bootstrap=False, use_weights=True, use_pull=True, targ_name='targets', wgt_name=None)

	Bases: lumin.nn.metrics.eval_metric.EvalMetric

Compute mean or standard deviation of delta or pull of some feature which is being directly regressed to.
Optionally, use bootstrap resampling on validation data.


	Parameters

	
	return_mean (bool) – whether to return the mean or the standard deviation


	use_bootstrap (bool) – whether to bootstrap resamples validation fold when computing statisitic


	use_weights (bool) – whether to actually use weights if wgt_name is set


	use_pull (bool) – whether to return the pull (differences / targets) or delta (differences)


	targ_name (str) – name of group in fold file containing regression targets


	wgt_name (Optional[str]) – name of group in fold file containing datapoint weights









	Examples::
	>>> mean_pull  = RegPull(return_mean=True, use_bootstrap=True,
...                      use_pull=True)
>>>
>>> std_delta  = RegPull(return_mean=False, use_bootstrap=True,
...                      use_pull=False)
>>>
>>> mean_pull  = RegPull(return_mean=True, use_bootstrap=False,
...                      use_pull=True, wgt_name='weights')










	
evaluate(fy, idx, y_pred)

	Compute statisitic on fold using provided predictions.


	Parameters

	
	fy (FoldYielder) – FoldYielder interfacing to data


	idx (int) – fold index corresponding to fold for which y_pred was computed


	y_pred (ndarray) – predictions for fold






	Return type

	float



	Returns

	Statistic set in initialisation computed on the chsoen fold






	Examples::
	>>> mean = mean_pull.evaluate(train_fy, val_id, val_preds)


















	
class lumin.nn.metrics.reg_eval.RegAsProxyPull(proxy_func, return_mean, use_bootstrap=False, use_weights=True, use_pull=True, targ_name='targets', wgt_name=None)

	Bases: lumin.nn.metrics.reg_eval.RegPull

Compute mean or standard deviation of delta or pull of some feature which is being indirectly regressed to via a proxy function.
Optionally, use bootstrap resampling on validation data.


	Parameters

	
	proxy_func (Callable[[DataFrame], None]) – function which acts on regression predictions and adds pred and gen_target columns to the Pandas DataFrame it is passed which contains
prediction columns pred_{i}


	return_mean (bool) – whether to return the mean or the standard deviation


	use_bootstrap (bool) – whether to bootstrap resamples validation fold when computing statisitic


	use_weights (bool) – whether to actually use weights if wgt_name is set


	use_pull (bool) – whether to return the pull (differences / targets) or delta (differences)


	targ_name (str) – name of group in fold file containing regression targets


	wgt_name (Optional[str]) – name of group in fold file containing datapoint weights









	Examples::
	>>> def reg_proxy_func(df):
>>>     df['pred'] = calc_pair_mass(df, (1.77682, 1.77682),
...                                 {targ[targ.find('_t')+3:]:
...                                 f'pred_{i}' for i, targ
...                                 in enumerate(targ_feats)})
>>>     df['gen_target'] = 125
>>>
>>> std_delta = RegAsProxyPull(proxy_func=reg_proxy_func,
...                            return_mean=False, use_pull=False)










	
evaluate(fy, idx, y_pred)

	Compute statisitic on fold using provided predictions.


	Parameters

	
	fy (FoldYielder) – FoldYielder interfacing to data


	idx (int) – fold index corresponding to fold for which y_pred was computed


	y_pred (ndarray) – predictions for fold






	Return type

	float



	Returns

	Statistic set in initialisation computed on the chsoen fold






	Examples::
	>>> mean = mean_pull.evaluate(train_fy, val_id, val_preds)
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lumin.nn.models package


Subpackages



	lumin.nn.models.blocks package

	lumin.nn.models.layers package








Submodules




lumin.nn.models.helpers module


	
class lumin.nn.models.helpers.CatEmbedder(cat_names, cat_szs, emb_szs=None, max_emb_sz=50, emb_load_path=None)

	Bases: object

Helper class for embedding categorical features. Designed to be passed to ModelBuilder.
Note that the classmethod from_fy() may be used to instantiate an CatEmbedder
from a FoldYielder.


	Parameters

	
	cat_names (List[str]) – list of names of catgorical features in order in which they will be passed as inputs columns


	cat_szs (List[int]) – list of cardinalities (number of unique elements) for each feature


	emb_szs (Optional[List[int]]) – Optional list of embedding sizes for each feature.  If None, will use min(max_emb_sz, (1+sz)//2)


	max_emb_sz (int) – Maximum size of embedding if emb_szs is None


	emb_load_path (Union[Path, str, None]) – if not None, will cause ModelBuilder to attempt to load pretrained embeddings from path









	Examples::
	>>> cat_embedder = CatEmbedder(cat_names=['n_jets', 'channel'],
                               cat_szs=[5, 3])
>>>
>>> cat_embedder = CatEmbedder(cat_names=['n_jets', 'channel'],
                               cat_szs=[5, 3], emb_szs=[2, 2])
>>>
>>> cat_embedder = CatEmbedder(cat_names=['n_jets', 'channel'],
                               cat_szs=[5, 3], emb_szs=[2, 2],
                               emb_load_path=Path('weights'))










	
calc_emb_szs()

	Method used to set sizes of embeddings for each categorical feature when no embedding sizes are explicitly passed
Uses rule of thumb of min(50, (1+cardinality)/2)


	Return type

	None










	
classmethod from_fy(fy, emb_szs=None, max_emb_sz=50, emb_load_path=None)

	Instantiate an CatEmbedder from a FoldYielder, i.e. avoid having to pass
cat_names and cat_szs.


	Parameters

	
	fy (FoldYielder) – FoldYielder with training data


	emb_szs (Optional[List[int]]) – Optional list of embedding sizes for each feature.  If None, will use min(max_emb_sz, (1+sz)//2)


	max_emb_sz (int) – Maximum size of embedding if emb_szs is None


	emb_load_path (Union[Path, str, None]) – if not None, will cause ModelBuilder to attempt to load pretrained embeddings from path






	Returns

	CatEmbedder






	Examples::
	>>> cat_embedder = CatEmbedder.from_fy(train_fy)
>>>
>>> cat_embedder = CatEmbedder.from_fy(train_fy, emb_szs=[2, 2])
>>>
>>> cat_embedder = CatEmbedder.from_fy(
        train_fy, emb_szs=[2, 2],
        emb_load_path=Path('weights'))




















lumin.nn.models.initialisations module


	
lumin.nn.models.initialisations.lookup_normal_init(act, fan_in=None, fan_out=None)

	Lookup for weight initialisation using Normal distributions


	Parameters

	
	act (str) – string representation of activation function


	fan_in (Optional[int]) – number of inputs to neuron


	fan_out (Optional[int]) – number of outputs from neuron






	Return type

	Callable[[Tensor], None]



	Returns

	Callable to initialise weight tensor










	
lumin.nn.models.initialisations.lookup_uniform_init(act, fan_in=None, fan_out=None)

	Lookup weight initialisation using Uniform distributions


	Parameters

	
	act (str) – string representation of activation function


	fan_in (Optional[int]) – number of inputs to neuron


	fan_out (Optional[int]) – number of outputs from neuron






	Return type

	Callable[[Tensor], None]



	Returns

	Callable to initialise weight tensor












lumin.nn.models.model module


	
class lumin.nn.models.model.Model(model_builder=None)

	Bases: lumin.nn.models.abs_model.AbsModel

Wrapper class to handle training and inference of NNs created via a ModelBuilder.
Note that saved models can be instantiated direcly via from_save() classmethod.


	Parameters

	model_builder (Optional[ModelBuilder]) – ModelBuilder which will construct the network, loss, and optimiser






	Examples::
	>>> model = Model(model_builder)










	
evaluate(inputs, targets, weights=None, callbacks=None, mask_inputs=True)

	Compute loss on provided data.


	Parameters

	
	inputs (Union[Tensor, ndarray, Tuple[Tensor, Tensor], Tuple[ndarray, ndarray]]) – input data


	targets (Union[Tensor, ndarray]) – targets


	weights (Union[Tensor, ndarray, None]) – Optional weights


	callbacks (Optional[List[AbsCallback]]) – list of any callbacks to use during evaluation


	mask_inputs (bool) – whether to apply input mask if one has been set






	Return type

	float



	Returns

	(weighted) loss of model predictions on provided data










	
evaluate_from_by(by, callbacks=None)

	Compute loss on provided data in batches provided by a :class:~lumin.nn.data.batch_yielder.BatchYielder.


	Parameters

	
	by (BatchYielder) – :class:~lumin.nn.data.batch_yielder.BatchYielder with data


	callbacks (Optional[List[AbsCallback]]) – list of any callbacks to use during evaluation






	Return type

	float



	Returns

	(weighted) loss of model predictions on provided data










	
export2onnx(name, bs=1)

	Export network to ONNX format.
Note that ONNX expects a fixed batch size (bs) which is the number of datapoints your wish to pass through the model concurrently.


	Parameters

	
	name (str) – filename for exported file


	bs (int) – batch size for exported models






	Return type

	None










	
export2tfpb(name, bs=1)

	Export network to Tensorflow ProtocolBuffer format, via ONNX.
Note that ONNX expects a fixed batch size (bs) which is the number of datapoints your wish to pass through the model concurrently.


	Parameters

	
	name (str) – filename for exported file


	bs (int) – batch size for exported models






	Return type

	None










	
fit(batch_yielder, callbacks=None, mask_inputs=True)

	Fit network for one complete iteration of a BatchYielder, i.e. one (sub-)epoch


	Parameters

	
	batch_yielder (BatchYielder) – BatchYielder providing training data in form of tuple of inputs, targtes, and weights as tensors on device


	callbacks (Optional[List[AbsCallback]]) – list of AbsCallback to be used during training


	mask_inputs (bool) – whether to apply input mask if one has been set






	Return type

	float



	Returns

	Loss on training data averaged across all minibatches










	
classmethod from_save(name, model_builder)

	Instantiated a Model and load saved state from file.


	Parameters

	
	name (str) – name of file containing saved state


	model_builder (ModelBuilder) – ModelBuilder which was used to construct the network






	Return type

	AbsModel



	Returns

	Instantiated Model with network weights, optimiser state, and input mask loaded from saved state






	Examples::
	>>> model = Model.from_save('weights/model.h5', model_builder)














	
get_feat_importance(fy, eval_metric=None)

	Call get_nn_feat_importance() passing this Model and provided arguments


	Parameters

	
	fy (FoldYielder) – FoldYielder interfacing to data on which to evaluate importance


	eval_metric (Optional[EvalMetric]) – Optional EvalMetric to use for quantifying performance






	Return type

	DataFrame










	
get_lr()

	Get learning rate of optimiser


	Return type

	float



	Returns

	learning rate of optimiser










	
get_mom()

	Get momentum/beta_1 of optimiser


	Return type

	float



	Returns

	momentum/beta_1 of optimiser










	
get_out_size()

	Get number of outputs of model


	Return type

	int



	Returns

	Number of outputs of model










	
get_param_count(trainable=True)

	Return number of parameters in model.


	Parameters

	trainable (bool) – if true (default) only count trainable parameters



	Return type

	int



	Returns

	NUmber of (trainable) parameters in model










	
get_weights()

	Get state_dict of weights for network


	Return type

	OrderedDict



	Returns

	state_dict of weights for network










	
load(name, model_builder=None)

	Load model, optimiser, and input mask states from file


	Parameters

	
	name (str) – name of save file


	model_builder (Optional[ModelBuilder]) – if Model was not initialised with a ModelBuilder, you will need to pass one here






	Return type

	None










	
predict(inputs, as_np=True, pred_name='pred', callbacks=None, verbose=True, bs=None)

	Apply model to inputed data and compute predictions.
A compatability method to call predict_array() or meth:~lumin.nn.models.model.Model.predict_folds, depending on input type.


	Parameters

	
	inputs (Union[ndarray, DataFrame, Tensor, FoldYielder]) – input data as Numpy array, Pandas DataFrame, or tensor on device, or FoldYielder interfacing to data


	as_np (bool) – whether to return predictions as Numpy array (otherwise tensor) if inputs are a Numpy array, Pandas DataFrame, or tensor


	pred_name (str) – name of group to which to save predictions if inputs are a FoldYielder


	callbacks (Optional[List[AbsCallback]]) – list of any callbacks to use during evaluation


	verbose (bool) – whether to print average prediction timings


	bs (Optional[int]) – if not None, will run prediction in batches of specified size to save of memory






	Return type

	Union[ndarray, Tensor, None]



	Returns

	if inputs are a Numpy array, Pandas DataFrame, or tensor, will return predicitions as either array or tensor










	
predict_array(inputs, as_np=True, mask_inputs=True, callbacks=None, bs=None)

	Pass inputs through network and obtain predictions.


	Parameters

	
	inputs (Union[ndarray, DataFrame, Tensor, Tuple]) – input data as Numpy array, Pandas DataFrame, or tensor on device


	as_np (bool) – whether to return predictions as Numpy array (otherwise tensor)


	mask_inputs (bool) – whether to apply input mask if one has been set


	callbacks (Optional[List[AbsCallback]]) – list of any callbacks to use during evaluation


	bs (Optional[int]) – if not None, will run prediction in batches of specified size to save of memory






	Return type

	Union[ndarray, Tensor]



	Returns

	Model prediction(s) per datapoint










	
predict_folds(fy, pred_name='pred', callbacks=None, verbose=True, bs=None)

	Apply model to all dataaccessed by a FoldYielder and save predictions as new group in fold file


	Parameters

	
	fy (FoldYielder) – FoldYielder interfacing to data


	pred_name (str) – name of group to which to save predictions


	callbacks (Optional[List[AbsCallback]]) – list of any callbacks to use during evaluation


	verbose (bool) – whether to print average prediction timings


	bs (Optional[int]) – if not None, will run prediction in batches of specified size to save of memory






	Return type

	None










	
save(name)

	Save model, optimiser, and input mask states to file


	Parameters

	name (str) – name of save file



	Return type

	None










	
set_input_mask(mask)

	Mask input columns by only using input columns whose indeces are listed in mask


	Parameters

	mask (ndarray) – array of column indeces to use from all input columns



	Return type

	None










	
set_lr(lr)

	set learning rate of optimiser


	Parameters

	lr (float) – learning rate of optimiser



	Return type

	None










	
set_mom(mom)

	Set momentum/beta_1 of optimiser


	Parameters

	mom (float) – momentum/beta_1 of optimiser



	Return type

	None










	
set_weights(weights)

	Set state_dict of weights for network


	Parameters

	weights (OrderedDict) – state_dict of weights for network



	Return type

	None
















lumin.nn.models.model_builder module


	
class lumin.nn.models.model_builder.ModelBuilder(objective, n_out, cont_feats=None, model_args=None, opt_args=None, cat_embedder=None, cont_subsample_rate=None, guaranteed_feats=None, loss='auto', head=<class 'lumin.nn.models.blocks.head.CatEmbHead'>, body=<class 'lumin.nn.models.blocks.body.FullyConnected'>, tail=<class 'lumin.nn.models.blocks.tail.ClassRegMulti'>, lookup_init=<function lookup_normal_init>, lookup_act=<function lookup_act>, pretrain_file=None, freeze_head=False, freeze_body=False, freeze_tail=False)

	Bases: object

Class to build models to specified architecture on demand along with an optimiser.


	Parameters

	
	objective (str) – string representation of network objective, i.e. ‘classification’, ‘regression’, ‘multiclass’


	n_out (int) – number of outputs required


	cont_feats (Optional[List[str]]) – list of names of continuous input features


	model_args (Optional[Dict[str, Dict[str, Any]]]) – dictionary of dictionaries of keyword arguments to pass to head, body, and tail to control architrcture


	opt_args (Optional[Dict[str, Any]]) – dictionary of arguments to pass to optimiser. Missing kargs will be filled with default values.
Currently, only ADAM (default), and SGD are available.


	cat_embedder (Optional[CatEmbedder]) – CatEmbedder for embedding categorical inputs


	cont_subsample_rate (Optional[float]) – if between in range (0, 1), will randomly select a fraction of continuous features (rounded upwards) to use as inputs


	guaranteed_feats (Optional[List[str]]) – if subsampling features, will always include the features listed here, which count towards the subsample fraction


	loss (Any) – either and uninstantiated loss class, or leave as ‘auto’ to select loss according to objective


	head (Callable[[Any], AbsHead]) – uninstantiated class which can receive input data and upscale it to model width


	body (Callable[[Any], AbsBody]) – uninstantiated class which implements the main bulk of the model’s hidden layers


	tail (Callable[[Any], AbsTail]) – uninstantiated class which scales the body to the required number of outputs and implements any final activation function and output scaling


	lookup_init (Callable[[str, Optional[int], Optional[int]], Callable[[Tensor], None]]) – function taking choice of activation function, number of inputs, and number of outputs an returning a function to initialise layer weights.


	lookup_act (Callable[[str], Module]) – function taking choice of activation function and returning an activation function layer


	pretrain_file (Optional[str]) – if set, will load saved parameters for entire network from saved model


	freeze_head (bool) – whether to start with the head parameters set to untrainable


	freeze_body (bool) – whether to start with the body parameters set to untrainable









	Examples::
	>>> model_builder = ModelBuilder(objective='classifier',
>>>                              cont_feats=cont_feats, n_out=1,
>>>                              model_args={'body':{'depth':4,
>>>                                                  'width':100}})
>>>
>>> min_targs = np.min(targets, axis=0).reshape(targets.shape[1],1)
>>> max_targs = np.max(targets, axis=0).reshape(targets.shape[1],1)
>>> min_targs[min_targs > 0] *=0.8
>>> min_targs[min_targs < 0] *=1.2
>>> max_targs[max_targs > 0] *=1.2
>>> max_targs[max_targs < 0] *=0.8
>>> y_range = np.hstack((min_targs, max_targs))
>>> model_builder = ModelBuilder(
>>>     objective='regression', cont_feats=cont_feats, n_out=6,
>>>     cat_embedder=CatEmbedder.from_fy(train_fy),
>>>     model_args={'body':{'depth':4, 'width':100},
>>>                 'tail':{y_range=y_range})
>>>
>>> model_builder = ModelBuilder(objective='multiclassifier',
>>>                              cont_feats=cont_feats, n_out=5,
>>>                              model_args={'body':{'width':100,
>>>                                                  'depth':6,
>>>                                                  'do':0.1,
>>>                                                  'res':True}})
>>>
>>> model_builder = ModelBuilder(objective='classifier',
>>>                              cont_feats=cont_feats, n_out=1,
>>>                              model_args={'body':{'depth':4,
>>>                                                  'width':100}},
>>>                              opt_args={'opt':'sgd',
>>>                                        'momentum':0.8,
>>>                                        'weight_decay':1e-5},
>>>                              loss=partial(SignificanceLoss,
>>>                                           sig_weight=sig_weight,
>>>                                           bkg_weight=bkg_weight,
>>>                                           func=calc_ams_torch))










	
build_model()

	Construct entire network module


	Return type

	Module



	Returns

	Instantiated nn.Module










	
classmethod from_model_builder(model_builder, pretrain_file=None, freeze_head=False, freeze_body=False, freeze_tail=False, loss=None, opt_args=None)

	Instantiate a ModelBuilder from an exisitng ModelBuilder, but with options to adjust loss, optimiser, pretraining, and module freezing


	Parameters

	
	model_builder – existing ModelBuilder or filename for a pickled ModelBuilder


	pretrain_file (Optional[str]) – if set, will load saved parameters for entire network from saved model


	freeze_head (bool) – whether to start with the head parameters set to untrainable


	freeze_body (bool) – whether to start with the body parameters set to untrainable


	freeze_tail (bool) – whether to start with the tail parameters set to untrainable


	loss (Optional[Any]) – either and uninstantiated loss class, or leave as ‘auto’ to select loss according to objective


	opt_args (Optional[Dict[str, Any]]) – dictionary of arguments to pass to optimiser. Missing kargs will be filled with default values. Choice of optimiser (‘opt’) keyword can
either be set by passing the string name (e.g. ‘adam’ ), but only ADAM and SGD are available this way, or by passing an uninstantiated
optimiser (e.g. torch.optim.Adam). If no optimser is set, then it defaults to ADAM. Additional keyword arguments can be set, and these will be
passed tot he optimiser during instantiation






	Returns

	Instantiated ModelBuilder






	Examples::
	>>> new_model_builder = ModelBuilder.from_model_builder(
>>>     ModelBuidler)
>>>
>>> new_model_builder = ModelBuilder.from_model_builder(
>>>     ModelBuidler, loss=partial(
>>>         SignificanceLoss, sig_weight=sig_weight,
>>>         bkg_weight=bkg_weight, func=calc_ams_torch))
>>>
>>> new_model_builder = ModelBuilder.from_model_builder(
>>>     'weights/model_builder.pkl',
>>>     opt_args={'opt':'sgd', 'momentum':0.8, 'weight_decay':1e-5})
>>>
>>> new_model_builder = ModelBuilder.from_model_builder(
>>>     'weights/model_builder.pkl',
>>>     opt_args={'opt':torch.optim.Adam,
...               'momentum':0.8,
...               'weight_decay':1e-5})














	
get_body(n_in, feat_map)

	Construct body module


	Return type

	AbsBody



	Returns

	Instantiated body nn.Module










	
get_head()

	Construct head module


	Return type

	AbsHead



	Returns

	Instantiated head nn.Module










	
get_model()

	Construct model, loss, and optimiser, optionally loading pretrained weights


	Return type

	Tuple[Module, Optimizer, Any]



	Returns

	Instantiated network, optimiser linked to model parameters, and uninstantiated loss










	
get_out_size()

	Get number of outputs of model


	Return type

	int



	Returns

	number of outputs of network










	
get_tail(n_in)

	Construct tail module


	Return type

	Module



	Returns

	Instantiated tail nn.Module










	
load_pretrained(model)

	Load model weights from pretrained file


	Parameters

	model (Module) – instantiated model, i.e. return of build_model()



	Returns

	model with weights loaded










	
set_lr(lr)

	Set learning rate for all model parameters


	Parameters

	lr (float) – learning rate



	Return type

	None
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lumin.nn.models.blocks package


Submodules




lumin.nn.models.blocks.body module


	
class lumin.nn.models.blocks.body.FullyConnected(n_in, feat_map, depth, width, do=0, bn=False, act='relu', res=False, dense=False, growth_rate=0, lookup_init=<function lookup_normal_init>, lookup_act=<function lookup_act>, freeze=False)

	Bases: lumin.nn.models.blocks.body.AbsBody

Fully connected set of hidden layers. Designed to be passed as a ‘body’ to ModelBuilder.
Supports batch normalisation and dropout.
Order is dense->activation->BN->DO, except when res is true in which case the BN is applied after the addition.
Can optionaly have skip connections between each layer (res=true).
Alternatively can concatinate layers (dense=true)
growth_rate parameter can be used to adjust the width of layers according to width+(width*(depth-1)*growth_rate)


	Parameters

	
	n_in (int) – number of inputs to the block


	feat_map (Dict[str, List[int]]) – dictionary mapping input features to the model to outputs of head block


	depth (int) – number of hidden layers. If res==True and depth is even, depth will be increased by one.


	width (int) – base width of each hidden layer


	do (float) – if not None will add dropout layers with dropout rates do


	bn (bool) – whether to use batch normalisation


	act (str) – string representation of argument to pass to lookup_act


	res (bool) – whether to add an additative skip connection every two dense layers. Mutually exclusive with dense.


	dense (bool) – whether to perform layer-wise concatinations after every layer. Mutually exclusion with res.


	growth_rate (int) – rate at which width of dense layers should increase with depth beyond the initial layer. Ignored if res=True. Can be negative.


	lookup_init (Callable[[str, Optional[int], Optional[int]], Callable[[Tensor], None]]) – function taking choice of activation function, number of inputs, and number of outputs an returning a function to initialise layer weights.


	lookup_act (Callable[[str], Any]) – function taking choice of activation function and returning an activation function layer


	freeze (bool) – whether to start with module parameters set to untrainable









	Examples::
	>>> body = FullyConnected(n_in=32, feat_map=head.feat_map, depth=4,
...                       width=100, act='relu')
>>>
>>> body = FullyConnected(n_in=32, feat_map=head.feat_map, depth=4,
...                       width=200, act='relu', growth_rate=-0.3)
>>>
>>> body = FullyConnected(n_in=32, feat_map=head.feat_map, depth=4,
...                       width=100, act='swish', do=0.1, res=True)
>>>
>>> body = FullyConnected(n_in=32, feat_map=head.feat_map, depth=6,
...                       width=32, act='selu', dense=True,
...                       growth_rate=0.5)
>>>
>>> body = FullyConnected(n_in=32, feat_map=head.feat_map, depth=6,
...                       width=50, act='prelu', bn=True,
...                       lookup_init=lookup_uniform_init)










	
forward(x)

	Pass tensor through block


	Parameters

	x (Tensor) – input tensor






	Returns
	Resulting tensor






	Return type

	Tensor










	
get_out_size()

	Get size width of output layer


	Return type

	int



	Returns

	Width of output layer














	
class lumin.nn.models.blocks.body.MultiBlock(n_in, feat_map, blocks, feats_per_block, bottleneck_sz=0, bottleneck_act=None, lookup_init=<function lookup_normal_init>, lookup_act=<function lookup_act>, freeze=False)

	Bases: lumin.nn.models.blocks.body.AbsBody

Body block allowing outputs of head block to be split amongst a series of body blocks.
Output is the concatination of all sub-body blocks.
Optionally, single-neuron ‘bottleneck’ layers can be used to pass an input to each sub-block based on a learned function of the input features that block
would otherwise not receive, i.e. a  highly compressed representation of the rest of teh feature space.


	Parameters

	
	n_in (int) – number of inputs to the block


	feat_map (Dict[str, List[int]]) – dictionary mapping input features to the model to outputs of head block


	blocks (List[partial]) – list of uninstantciated AbsBody blocks to which to pass a subsection of the total inputs. Note that
partials should be used to set any relevant parameters at initialisation time


	feats_per_block (List[List[str]]) – list of lists of names of features to pass to each AbsBody, not that the feat_map provided by
AbsHead will map features to their relavant head outputs


	bottleneck – if true, each block will receive the output of a single neuron which takes as input all the features which each given block does not
directly take as inputs


	bottleneck_act (Optional[str]) – if set to a string representation of an activation function, the output of each bottleneck neuron will be passed throguh the defined
activation function before being passed to their associated blocks


	lookup_init (Callable[[str, Optional[int], Optional[int]], Callable[[Tensor], None]]) – function taking choice of activation function, number of inputs, and number of outputs an returning a function to initialise layer weights.


	lookup_act (Callable[[str], Any]) – function taking choice of activation function and returning an activation function layer


	freeze (bool) – whether to start with module parameters set to untrainable









	Examples::
	>>> body = MultiBlock(
...     blocks=[partial(FullyConnected, depth=1, width=50, act='swish'),
...             partial(FullyConnected, depth=6, width=55, act='swish',
...                     dense=True, growth_rate=-0.1)],
...     feats_per_block=[[f for f in train_feats if 'DER_' in f],
...                      [f for f in train_feats if 'PRI_' in f]])
>>>
>>> body = MultiBlock(
...     blocks=[partial(FullyConnected, depth=1, width=50, act='swish'),
...     partial(FullyConnected, depth=6, width=55, act='swish',
...             dense=True, growth_rate=-0.1)],
...     feats_per_block=[[f for f in train_feats if 'DER_' in f],
...                      [f for f in train_feats if 'PRI_' in f]],
...     bottleneck=True)
>>>
>>> body = MultiBlock(
...     blocks=[partial(FullyConnected, depth=1, width=50, act='swish'),
...             partial(FullyConnected, depth=6, width=55, act='swish',
...                     dense=True, growth_rate=-0.1)],
...     feats_per_block=[[f for f in train_feats if 'DER_' in f],
...                      [f for f in train_feats if 'PRI_' in f]],
...     bottleneck=True, bottleneck_act='swish')










	
forward(x)

	Pass tensor through block


	Parameters

	x (Tensor) – input tensor






	Returns
	Resulting tensor






	Return type

	Tensor










	
get_out_size()

	Get size width of output layer


	Return type

	int



	Returns

	Total number of outputs accross all blocks
















lumin.nn.models.blocks.conv_blocks module


	
class lumin.nn.models.blocks.conv_blocks.Conv1DBlock(in_c, out_c, kernel_sz, padding='auto', stride=1, act='relu', bn=False, lookup_init=<function lookup_normal_init>, lookup_act=<function lookup_act>)

	Bases: torch.nn.modules.module.Module

Basic building block for a building and applying a single 1D convolutional layer.


	Parameters

	
	in_c (int) – number of input channels (number of features per object / rows in input matrix)


	out_c (int) – number of output channels (number of features / rows in output matrix)


	kernel_sz (int) – width of kernel, i.e. the number of columns to overlay


	padding (Union[int, str]) – amount of padding columns to add at start and end of convolution.
If left as ‘auto’, padding will be automatically computed to conserve the number of columns.


	stride (int) – number of columns to move kernel when computing convolutions. Stride 1 = kernel centred on each column,
stride 2 = kernel centred on ever other column and input size halved, et cetera.


	act (str) – string representation of argument to pass to lookup_act


	bn (bool) – whether to use batch normalisation (default order weights->activation->batchnorm)


	lookup_init (Callable[[str, Optional[int], Optional[int]], Callable[[Tensor], None]]) – function taking choice of activation function, number of inputs, and number of outputs an returning a function to initialise layer weights.


	lookup_act (Callable[[str], Any]) – function taking choice of activation function and returning an activation function layer









	Examples::
	>>> conv = Conv1DBlock(in_c=3, out_c=16, kernel_sz=3)
>>>
>>> conv = Conv1DBlock(in_c=16, out_c=32, kernel_sz=3, stride=2)
>>>
>>> conv = Conv1DBlock(in_c=3, out_c=16, kernel_sz=3, act='swish', bn=True)










	
forward(x)

	Passes input through the layers.
Might need to be overloaded in inheritance, depending on architecture.


	Parameters

	x (Tensor) – input tensor



	Return type

	Tensor



	Returns

	Resulting tensor










	
get_conv_layer(in_c, out_c, kernel_sz, padding='auto', stride=1, pre_act=False, groups=1)

	Builds a sandwich of layers with a single concilutional layer, plus any requested batch norm and activation.
Also initialises layers to requested scheme.


	Parameters

	
	in_c (int) – number of input channels (number of features per object / rows in input matrix)


	out_c (int) – number of output channels (number of features / rows in output matrix)


	kernel_sz (int) – width of kernel, i.e. the number of columns to overlay


	padding (Union[int, str]) – amount of padding columns to add at start and end of convolution.
If left as ‘auto’, padding will be automatically computed to conserve the number of columns.


	stride (int) – number of columns to move kernel when computing convolutions. Stride 1 = kernel centred on each column,
stride 2 = kernel centred on ever other column and input size halved, et cetera.


	pre_act (bool) – whether to apply batchnorm and activation layers prior to the weight layer, or afterwards


	groups (int) – number of blocks of connections from input channels to output channels






	Return type

	Module










	
static get_padding(kernel_sz)

	Automatically computes the required padding to keep the number of columns equal before and after convolution


	Parameters

	kernel_sz (int) – width of convolutional kernel



	Return type

	int



	Returns

	size of padding










	
set_layers()

	One of the main function to overload when inheriting from class. By default calls self.get_conv_layer once but can be changed to produce more
complicated architectures. Sets self.layers to the constructed architecture.


	Return type

	None














	
class lumin.nn.models.blocks.conv_blocks.Res1DBlock(in_c, out_c, kernel_sz, padding='auto', stride=1, act='relu', bn=False, lookup_init=<function lookup_normal_init>, lookup_act=<function lookup_act>)

	Bases: lumin.nn.models.blocks.conv_blocks.Conv1DBlock

Basic building block for a building and applying a pair of residually connected 1D convolutional layers (https://arxiv.org/abs/1512.03385).
Batchnorm is applied ‘pre-activation’ as per https://arxiv.org/pdf/1603.05027.pdf, and convolutional shortcuts (again https://arxiv.org/pdf/1603.05027.pdf)
are used when the stride of the first layer is greater than 1, or the number of input channels does not equal the number of output channels.


	Parameters

	
	in_c (int) – number of input channels (number of features per object / rows in input matrix)


	out_c (int) – number of output channels (number of features / rows in output matrix)


	kernel_sz (int) – width of kernel, i.e. the number of columns to overlay


	padding (Union[int, str]) – amount of padding columns to add at start and end of convolution.
If left as ‘auto’, padding will be automatically computed to conserve the number of columns.


	stride (int) – number of columns to move kernel when computing convolutions. Stride 1 = kernel centred on each column,
stride 2 = kernel centred on ever other column and input size halved, et cetera.


	act (str) – string representation of argument to pass to lookup_act


	bn (bool) – whether to use batch normalisation (order is pre-activation: batchnorm->activation->weights)


	lookup_init (Callable[[str, Optional[int], Optional[int]], Callable[[Tensor], None]]) – function taking choice of activation function, number of inputs, and number of outputs an returning a function to initialise layer weights.


	lookup_act (Callable[[str], Any]) – function taking choice of activation function and returning an activation function layer









	Examples::
	>>> conv = Res1DBlock(in_c=16, out_c=16, kernel_sz=3)
>>>
>>> conv = Res1DBlock(in_c=16, out_c=32, kernel_sz=3, stride=2)
>>>
>>> conv = Res1DBlock(in_c=16, out_c=16, kernel_sz=3, act='swish', bn=True)










	
forward(x)

	Passes input through the pair of layers and then adds the resulting tensor to the original input,
which may be passed through a shortcut connection is necessary.


	Parameters

	x (Tensor) – input tensor



	Return type

	Tensor



	Returns

	Resulting tensor










	
set_layers()

	Constructs a pair of pre-activation convolutional layers, and a shortcut layer if necessary.










	
class lumin.nn.models.blocks.conv_blocks.ResNeXt1DBlock(in_c, inter_c, cardinality, out_c, kernel_sz, padding='auto', stride=1, act='relu', bn=False, lookup_init=<function lookup_normal_init>, lookup_act=<function lookup_act>)

	Bases: lumin.nn.models.blocks.conv_blocks.Conv1DBlock

Basic building block for a building and applying a set of residually connected groups of 1D convolutional layers (https://arxiv.org/abs/1611.05431).
Batchnorm is applied ‘pre-activation’ as per https://arxiv.org/pdf/1603.05027.pdf, and convolutional shortcuts (again https://arxiv.org/pdf/1603.05027.pdf)
are used when the stride of the first layer is greater than 1, or the number of input channels does not equal the number of output channels.


	Parameters

	
	in_c (int) – number of input channels (number of features per object / rows in input matrix)


	inter_c (int) – number of intermediate channels in groups


	cardinality (int) – number of groups


	out_c (int) – number of output channels (number of features / rows in output matrix)


	kernel_sz (int) – width of kernel, i.e. the number of columns to overlay


	padding (Union[int, str]) – amount of padding columns to add at start and end of convolution.
If left as ‘auto’, padding will be automatically computed to conserve the number of columns.


	stride (int) – number of columns to move kernel when computing convolutions. Stride 1 = kernel centred on each column,
stride 2 = kernel centred on ever other column and input size halved, et cetera.


	act (str) – string representation of argument to pass to lookup_act


	bn (bool) – whether to use batch normalisation (order is pre-activation: batchnorm->activation->weights)


	lookup_init (Callable[[str, Optional[int], Optional[int]], Callable[[Tensor], None]]) – function taking choice of activation function, number of inputs, and number of outputs an returning a function to initialise layer weights.


	lookup_act (Callable[[str], Any]) – function taking choice of activation function and returning an activation function layer









	Examples::
	>>> conv = ResNeXt1DBlock(in_c=32, inter_c=4, cardinality=4, out_c=32, kernel_sz=3)
>>>
>>> conv = ResNeXt1DBlock(in_c=32, inter_c=4, cardinality=4, out_c=32, kernel_sz=3, stride=2)
>>>
>>> conv = ResNeXt1DBlock(in_c=32, inter_c=4, cardinality=4, out_c=32, kernel_sz=3, act='swish', bn=True)










	
forward(x)

	Passes input through the set of layers and then adds the resulting tensor to the original input,
which may be passed through a shortcut connection is necessary.


	Parameters

	x (Tensor) – input tensor



	Return type

	Tensor



	Returns

	Resulting tensor










	
set_layers()

	Constructs a set of grouped pre-activation convolutional layers, and a shortcut layer if necessary.












lumin.nn.models.blocks.endcap module


	
class lumin.nn.models.blocks.endcap.AbsEndcap(model)

	Bases: torch.nn.modules.module.Module

Abstract class for constructing post training layer which performs further calculation on NN outputs.
Used when NN was trained to some proxy objective


	Parameters

	model (Module) – trained Model to wrap






	
forward(x)

	Pass tensor through endcap and compute function


	Parameters

	x (Tensor) – model output tensor






	Returns
	Resulting tensor






	Return type

	Tensor










	
abstract func(x)

	Transformation functio to apply to model outputs


	Arguements:
	x: model output tensor






	Return type

	Tensor



	Returns

	Resulting tensor










	
predict(inputs, as_np=True)

	Evaluate model on input tensor, and comput function of model outputs


	Parameters

	
	inputs (Union[ndarray, DataFrame, Tensor]) – input data as Numpy array, Pandas DataFrame, or tensor on device


	as_np (bool) – whether to return predictions as Numpy array (otherwise tensor)






	Return type

	Union[ndarray, Tensor]



	Returns

	model predictions pass through endcap function
















lumin.nn.models.blocks.head module


	
class lumin.nn.models.blocks.head.CatEmbHead(cont_feats, do_cont=0, do_cat=0, cat_embedder=None, lookup_init=<function lookup_normal_init>, freeze=False)

	Bases: lumin.nn.models.blocks.head.AbsHead

Standard model head for columnar data.
Provides inputs for continuous features and embedding matrices for categorical inputs, and uses a dense layer to upscale to width of network body.
Designed to be passed as a ‘head’ to ModelBuilder.
Supports batch normalisation and dropout (at separate rates for continuous features and categorical embeddings).
Continuous features are expected to be the first len(cont_feats) columns of input tensors and categorical features the remaining columns.
Embedding arguments for categorical features are set using a CatEmbedder.


	Parameters

	
	cont_feats (List[str]) – list of names of continuous input features


	do_cont (float) – if not None will add a dropout layer with dropout rate do acting on the continuous inputs prior to concatination wih the categorical embeddings


	do_cat (float) – if not None will add a dropout layer with dropout rate do acting on the categorical embeddings prior to concatination wih the continuous inputs


	cat_embedder (Optional[CatEmbedder]) – CatEmbedder providing details of how to embed categorical inputs


	lookup_init (Callable[[str, Optional[int], Optional[int]], Callable[[Tensor], None]]) – function taking choice of activation function, number of inputs, and number of outputs an returning a function to initialise layer weights.


	freeze (bool) – whether to start with module parameters set to untrainable









	Examples::
	>>> head = CatEmbHead(cont_feats=cont_feats)
>>>
>>> head = CatEmbHead(cont_feats=cont_feats,
...                   cat_embedder=CatEmbedder.from_fy(train_fy))
>>>
>>> head = CatEmbHead(cont_feats=cont_feats,
...                   cat_embedder=CatEmbedder.from_fy(train_fy),
...                   do_cont=0.1, do_cat=0.05)
>>>
>>> head = CatEmbHead(cont_feats=cont_feats,
...                   cat_embedder=CatEmbedder.from_fy(train_fy),
...                   lookup_init=lookup_uniform_init)










	
forward(x)

	Pass tensor through block


	Parameters

	x (Tensor) – input tensor






	Returns
	Resulting tensor






	Return type

	Tensor










	
get_embeds()

	Get state_dict for every embedding matrix.


	Return type

	Dict[str, OrderedDict]



	Returns

	Dictionary mapping categorical features to learned embedding matrix










	
get_out_size()

	Get size width of output layer


	Return type

	int



	Returns

	Width of output layer










	
plot_embeds(savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Plot representations of embedding matrices for each categorical feature.


	Parameters

	
	savename (Optional[str]) – if not None, will save copy of plot to give path


	settings (PlotSettings) – PlotSettings class to control figure appearance






	Return type

	None










	
save_embeds(path)

	Save learned embeddings to path.
Each categorical embedding matic will be saved as a separate state_dict with name equal to the feature name as set in cat_embedder


	Parameters

	path (Path) – path to which to save embedding weights



	Return type

	None














	
class lumin.nn.models.blocks.head.MultiHead(cont_feats, matrix_head, flat_head=<class 'lumin.nn.models.blocks.head.CatEmbHead'>, cat_embedder=None, lookup_init=<function lookup_normal_init>, freeze=False, **kargs)

	Bases: lumin.nn.models.blocks.head.AbsHead

Wrapper head to handel data containing flat continuous and categorical features, and matrix data.
Flat inputs are passed through flat_head, and matrix inputs are passed through matrix_head. The outputs of both blocks are then concatenated together.
Incoming data can either be: Completely flat, in which case the matrix_head should construct its own matrix from the data;
or a tuple of flat data and the matrix, in which case the matrix_head will receive the data already in matrix format.


	Parameters

	
	cont_feats (List[str]) – list of names of continuous and matrix input features


	matrix_head (Callable[[Any], AbsMatrixHead]) – Uninitialised (partial) head to handle matrix data e.g. InteractionNet


	flat_head (Callable[[Any], AbsHead]) – Uninitialised (partial) head to handle flat data e.g. CatEmbHead


	cat_embedder (Optional[CatEmbedder]) – CatEmbedder providing details of how to embed categorical inputs


	lookup_init (Callable[[str, Optional[int], Optional[int]], Callable[[Tensor], None]]) – function taking choice of activation function, number of inputs, and number of outputs an returning a function to initialise layer weights.


	freeze (bool) – whether to start with module parameters set to untrainable








Examples::
>>> inet = partial(InteractionNet, intfunc_depth=2,intfunc_width=4,intfunc_out_sz=3,
…        outfunc_depth=2,outfunc_width=5,outfunc_out_sz=4,agg_method=’flatten’,
…        feats_per_vec=feats_per_vec,vecs=vecs, act=’swish’)
… multihead = MultiHead(cont_feats=cont_feats+matrix_feats, matrix_head=inet, cat_embedder=CatEmbedder.from_fy(train_fy))


	
forward(x)

	Pass incoming data through flat and matrix heads.
If x is a Tuple then the first element is passed to the flat head and the secons is sent to the matrix head.
Else the elements corresponding to flat dta are sent to the flat head and the elements corresponding to matrix elements are sent to the matrix head.


	Parameters

	x (Union[Tensor, Tuple[Tensor, Tensor]]) – input data as either a flat Tensor or a Tuple of the form [flat Tensor, matrix Tensor]



	Return type

	Tensor



	Returns

	Concetanted outout of flat and matrix heads










	
get_out_size()

	Get size of output


	Return type

	int



	Returns

	Output size of flat head + output size of matrix head














	
class lumin.nn.models.blocks.head.InteractionNet(cont_feats, vecs, feats_per_vec, intfunc_depth, intfunc_width, intfunc_out_sz, outfunc_depth, outfunc_width, outfunc_out_sz, agg_method, do=0, bn=False, act='relu', lookup_init=<function lookup_normal_init>, lookup_act=<function lookup_act>, freeze=False, **kargs)

	Bases: lumin.nn.models.blocks.head.AbsMatrixHead

Implementation of the Interaction Graph-Network (https://arxiv.org/abs/1612.00222).
Shown to be applicable for embedding many 4-momenta in e.g. https://arxiv.org/abs/1908.05318

Incoming data can either be flat, in which case it is reshaped into a matrix, or be supplied directly in column-wise matrix form.
Matrices should/will be column-wise: each column is a seperate object (e.g. particle and jet) and each row is a feature (e.g. energy and mometum component).
Matrix elements are expected to be named according to {object}_{feature}, e.g. photon_energy.
vecs (vectors) should then be a list of objects, i.e. column headers, feature prefixes.
feats_per_vec should be a list of features, i.e. row headers, feature suffixes.


Note

To allow for the fact that there may be nonexistant features (e.g. z-component of missing energy), cont_feats should be a list of all matrix features
which really do exist (i.e. are present in input data), and be in the same order as the incoming data. Nonexistant features will be set zero.



The penultimate stage of processing in the interaction net is a matrix, this must be processed into a flat tensor. agg_method controls how this is done:
‘sum’ will sum over the embedded representations of each object meaning that the objects can be placed in any order, however some information will be lost
during the aggregation. ‘flatten’ will flatten out the matrix preserving all the information, however the objects must be placed in some order each time.
Additionally, the ‘flatten’ mode can potentially become quite large if many objects are embedded. A future comprimise might be to feed the embeddings into
a recurrent layer to provide a smaller output which preserves more information than the summing.


	Parameters

	
	cont_feats (List[str]) – list of all the matrix features which are present in the input data


	vecs (List[str]) – list of objects, i.e. column headers, feature prefixes


	feats_per_vec (List[str]) – list of features per object, i.e. row headers, feature suffixes


	intfunc_depth (int) – number of layers in the interaction-representation network


	intfunc_width (int) – width of hidden layers in the interaction-representation network


	intfunc_out_sz (int) – width of output layer of the interaction-representation network, i.e. the size of each interaction representation


	outfunc_depth (int) – number of layers in the post-interaction network


	outfunc_width (int) – width of hidden layers in the post-interaction network


	outfunc_out_sz (int) – width of output layer of the post-interaction network, i.e. the size of each output representation


	agg_method (str) – how to transform the output matrix, currently either ‘sum’ to sum across objects, or ‘flatten’ to flatten out the matrix


	do (float) – dropout rate to be applied to hidden layers in the interaction-representation and post-interaction networks


	bn (bool) – whether batch normalisation should be applied to hidden layers in the interaction-representation and post-interaction networks


	act (str) – activation function to apply to hidden layers in the interaction-representation and post-interaction networks


	lookup_init (Callable[[str, Optional[int], Optional[int]], Callable[[Tensor], None]]) – function taking choice of activation function, number of inputs, and number of outputs an returning a function to initialise layer weights.


	lookup_act (Callable[[str], Any]) – function taking choice of activation function and returning an activation function layer


	freeze (bool) – whether to start with module parameters set to untrainable









	Examples::
	>>> inet = InteractionNet(cont_feats=matrix_feats, feats_per_vec=feats_per_vec,vecs=vecs,
...                       intfunc_depth=2,intfunc_width=4,intfunc_out_sz=3,
...                       outfunc_depth=2,outfunc_width=5,outfunc_out_sz=4,agg_method='flatten')
>>>
>>> inet = InteractionNet(cont_feats=matrix_feats, feats_per_vec=feats_per_vec,vecs=vecs,
...                       intfunc_depth=2,intfunc_width=4,intfunc_out_sz=6,
...                       outfunc_depth=2,outfunc_width=5,outfunc_out_sz=8,agg_method='sum')
>>>
>>> inet = InteractionNet(cont_feats=matrix_feats, feats_per_vec=feats_per_vec,vecs=vecs,
...                       intfunc_depth=3,intfunc_width=4,intfunc_out_sz=3,
...                       outfunc_depth=3,outfunc_width=5,outfunc_out_sz=4,agg_method='flatten',
...                       do=0.1, bn=True, act='swish', lookup_init=lookup_uniform_init)










	
forward(x)

	Passes input through the interaction network and aggregates out down to a flat tensor.


	Parameters

	x (Union[Tensor, Tuple[Tensor, Tensor]]) – If a tuple, the second element is assumed to the be the matrix data. If a flat tensor, will conver the data to a matrix



	Return type

	Tensor



	Returns

	Resulting tensor










	
get_out_size()

	Get size of output


	Return type

	int



	Returns

	Width of output representation














	
class lumin.nn.models.blocks.head.RecurrentHead(cont_feats, vecs, feats_per_vec, depth, width, bidirectional=False, rnn=<class 'torch.nn.modules.rnn.RNN'>, do=0.0, act='tanh', stateful=False, freeze=False, **kargs)

	Bases: lumin.nn.models.blocks.head.AbsMatrixHead

Recurrent head for row-wise matrix data applying e.g. RNN, LSTM, GRU.

Incoming data can either be flat, in which case it is reshaped into a matrix, or be supplied directly into matrix form.
Matrices should/will be row-wise: each column is a seperate object (e.g. particle and jet) and each row is a feature (e.g. energy and mometum component).
Matrix elements are expected to be named according to {object}_{feature}, e.g. photon_energy.
vecs (vectors) should then be a list of objects, i.e. row headers, feature prefixes.
feats_per_vec should be a list of features, i.e. column headers, feature suffixes.


Note

To allow for the fact that there may be nonexistant features (e.g. z-component of missing energy), cont_feats should be a list of all matrix features
which really do exist (i.e. are present in input data), and be in the same order as the incoming data. Nonexistant features will be set zero.




	Parameters

	
	cont_feats (List[str]) – list of all the matrix features which are present in the input data


	vecs (List[str]) – list of objects, i.e. row headers, feature prefixes


	feats_per_vec (List[str]) – list of features per object, i.e. columns headers, feature suffixes


	depth (int) – number of hidden layers to use


	width (int) – size of each hidden state


	bidirectional (bool) – whether to set recurrent layers to be bidirectional


	rnn (RNNBase) – module class to use for the recurrent layer, e.g. torch.nn.RNN, torch.nn.LSTM, torch.nn.GRU


	do (float) – dropout rate to be applied to hidden layers


	act (str) – activation function to apply to hidden layers, only used if rnn expects a nonliearity


	stateful (bool) – whether to return all intermediate hidden states, or only the final hidden states


	freeze (bool) – whether to start with module parameters set to untrainable









	Examples::
	>>> rnn = RecurrentHead(cont_feats=matrix_feats, feats_per_vec=feats_per_vec,vecs=vecs, depth=1, width=20)
>>>
>>> rnn = RecurrentHead(cont_feats=matrix_feats, feats_per_vec=feats_per_vec,vecs=vecs,
...                     depth=2, width=10, act='relu', bidirectional=True)
>>>
>>> lstm = RecurrentHead(cont_feats=matrix_feats, feats_per_vec=feats_per_vec,vecs=vecs,
...                      depth=1, width=10, rnn=nn.LSTM)
>>>
>>> gru = RecurrentHead(cont_feats=matrix_feats, feats_per_vec=feats_per_vec,vecs=vecs,
...                     depth=3, width=10, rnn=nn.GRU, bidirectional=True)










	
forward(x)

	Passes input through the recurrent network.


	Parameters

	x (Union[Tensor, Tuple[Tensor, Tensor]]) – If a tuple, the second element is assumed to the be the matrix data. If a flat tensor, will conver the data to a matrix



	Return type

	Tensor



	Returns

	if stateful, returns all hidden states, otherwise only returns last hidden state










	
get_out_size()

	Get size of output


	Return type

	Union[int, Tuple[int, int]]



	Returns

	Width of output representation, or shape of output if stateful














	
class lumin.nn.models.blocks.head.AbsConv1dHead(cont_feats, vecs, feats_per_vec, act='relu', bn=False, layer_kargs=None, lookup_init=<function lookup_normal_init>, lookup_act=<function lookup_act>, freeze=False, **kargs)

	Bases: lumin.nn.models.blocks.head.AbsMatrixHead

Abstract wrapper head for applying 1D convolutions to column-wise matrix data.
Users should inherit from this class and overload get_layers() to define their model.
Some common convolutional layers are already defined (e.g. ConvBlock and
ResNeXt), which are accessable using methods such as
:meth`~lumin.nn.models.blocks.heads.AbsConv1dHead..get_conv1d_block`.
For more complicated models, foward() can also be overwritten
The output size of the block is automatically computed during initialisation by passing through random pseudodata.

Incoming data can either be flat, in which case it is reshaped into a matrix, or be supplied directly into matrix form.
Matrices should/will be row-wise: each column is a seperate object (e.g. particle and jet) and each row is a feature (e.g. energy and mometum component).
Matrix elements are expected to be named according to {object}_{feature}, e.g. photon_energy.
vecs (vectors) should then be a list of objects, i.e. row headers, feature prefixes.
feats_per_vec should be a list of features, i.e. column headers, feature suffixes.


Note

To allow for the fact that there may be nonexistant features (e.g. z-component of missing energy), cont_feats should be a list of all matrix features
which really do exist (i.e. are present in input data), and be in the same order as the incoming data. Nonexistant features will be set zero.




	Parameters

	
	cont_feats (List[str]) – list of all the matrix features which are present in the input data


	vecs (List[str]) – list of objects, i.e. row headers, feature prefixes


	feats_per_vec (List[str]) – list of features per object, i.e. columns headers, feature suffixes


	act (str) – activation function passed to get_layers


	bn (bool) – batch normalisation argument passed to get_layers


	layer_kargs (Optional[Dict[str, Any]]) – dictionary of keyword arguments which are passed to get_layers


	lookup_init (Callable[[str, Optional[int], Optional[int]], Callable[[Tensor], None]]) – function taking choice of activation function, number of inputs, and number of outputs an returning a function to initialise layer weights.


	freeze (bool) – whether to start with module parameters set to untrainable









	Examples::
	>>> class MyCNN(AbsConv1dHead):
...     def get_layers(self, act:str='relu', bn:bool=False, **kargs) -> Tuple[nn.Module, int]:
...         layers = []
...         layers.append(self.get_conv1d_block(3, 16, stride=1, kernel_sz=3, act=act, bn=bn))
...         layers.append(self.get_conv1d_block(16, 16, stride=1, kernel_sz=3, act=act, bn=bn))
...         layers.append(self.get_conv1d_block(16, 32, stride=2, kernel_sz=3, act=act, bn=bn))
...         layers.append(self.get_conv1d_block(32, 32, stride=1, kernel_sz=3, act=act, bn=bn))
...         layers.append(nn.AdaptiveAvgPool1d(1))
...         layers = nn.Sequential(*layers)
...         return layers
...
... cnn = MyCNN(cont_feats=matrix_feats, vecs=vectors, feats_per_vec=feats_per_vec)
>>>
>>> class MyResNet(AbsConv1dHead):
...     def get_layers(self, act:str='relu', bn:bool=False, **kargs) -> Tuple[nn.Module, int]:
...         layers = []
...         layers.append(self.get_conv1d_block(3, 16, stride=1, kernel_sz=3, act='linear', bn=False))
...         layers.append(self.get_conv1d_res_block(16, 16, stride=1, kernel_sz=3, act=act, bn=bn))
...         layers.append(self.get_conv1d_res_block(16, 32, stride=2, kernel_sz=3, act=act, bn=bn))
...         layers.append(self.get_conv1d_res_block(32, 32, stride=1, kernel_sz=3, act=act, bn=bn))
...         layers.append(nn.AdaptiveAvgPool1d(1))
...         layers = nn.Sequential(*layers)
...         return layers
...
... cnn = MyResNet(cont_feats=matrix_feats, vecs=vectors, feats_per_vec=feats_per_vec)
>>>
>>> class MyResNeXt(AbsConv1dHead):
...     def get_layers(self, act:str='relu', bn:bool=False, **kargs) -> Tuple[nn.Module, int]:
...         layers = []
...         layers.append(self.get_conv1d_block(3, 32, stride=1, kernel_sz=3, act='linear', bn=False))
...         layers.append(self.get_conv1d_resNeXt_block(32, 4, 4, 32, stride=1, kernel_sz=3, act=act, bn=bn))
...         layers.append(self.get_conv1d_resNeXt_block(32, 4, 4, 32, stride=2, kernel_sz=3, act=act, bn=bn))
...         layers.append(self.get_conv1d_resNeXt_block(32, 4, 4, 32, stride=1, kernel_sz=3, act=act, bn=bn))
...         layers.append(nn.AdaptiveAvgPool1d(1))
...         layers = nn.Sequential(*layers)
...         return layers
...
... cnn = MyResNeXt(cont_feats=matrix_feats, vecs=vectors, feats_per_vec=feats_per_vec)










	
check_out_sz()

	Automatically computes the output size of the head by passing through random data of the expected shape


	Return type

	int



	Returns

	x.size(-1) where x is the outgoing tensor from the head










	
forward(x)

	Passes input through the convolutional network.


	Parameters

	x (Union[Tensor, Tuple[Tensor, Tensor]]) – If a tuple, the second element is assumed to the be the matrix data. If a flat tensor, will conver the data to a matrix



	Return type

	Tensor



	Returns

	Resulting tensor










	
get_conv1d_block(in_c, out_c, kernel_sz, padding='auto', stride=1, act='relu', bn=False)

	Wrapper method to build a ConvBlock object.


	Parameters

	
	in_c (int) – number of input channels (number of features per object / rows in input matrix)


	out_c (int) – number of output channels (number of features / rows in output matrix)


	kernel_sz (int) – width of kernel, i.e. the number of columns to overlay


	padding (Union[int, str]) – amount of padding columns to add at start and end of convolution.
If left as ‘auto’, padding will be automatically computed to conserve the number of columns.


	stride (int) – number of columns to move kernel when computing convolutions. Stride 1 = kernel centred on each column,
stride 2 = kernel centred on ever other column and input size halved, et cetera.


	act (str) – string representation of argument to pass to lookup_act


	bn (bool) – whether to use batch normalisation (order is weights->activation->batchnorm)






	Return type

	Conv1DBlock



	Returns

	Instantiated ConvBlock object










	
get_conv1d_resNeXt_block(in_c, inter_c, cardinality, out_c, kernel_sz, padding='auto', stride=1, act='relu', bn=False)

	Wrapper method to build a ResNeXt1DBlock object.


	Parameters

	
	in_c (int) – number of input channels (number of features per object / rows in input matrix)


	inter_c (int) – number of intermediate channels in groups


	cardinality (int) – number of groups


	out_c (int) – number of output channels (number of features / rows in output matrix)


	kernel_sz (int) – width of kernel, i.e. the number of columns to overlay


	padding (Union[int, str]) – amount of padding columns to add at start and end of convolution.
If left as ‘auto’, padding will be automatically computed to conserve the number of columns.


	stride (int) – number of columns to move kernel when computing convolutions. Stride 1 = kernel centred on each column,
stride 2 = kernel centred on ever other column and input size halved, et cetera.


	act (str) – string representation of argument to pass to lookup_act


	bn (bool) – whether to use batch normalisation (order is pre-activation: batchnorm->activation->weights)






	Return type

	ResNeXt1DBlock



	Returns

	Instantiated ResNeXt1DBlock object










	
get_conv1d_res_block(in_c, out_c, kernel_sz, padding='auto', stride=1, act='relu', bn=False)

	Wrapper method to build a Res1DBlock object.


	Parameters

	
	in_c (int) – number of input channels (number of features per object / rows in input matrix)


	out_c (int) – number of output channels (number of features / rows in output matrix)


	kernel_sz (int) – width of kernel, i.e. the number of columns to overlay


	padding (Union[int, str]) – amount of padding columns to add at start and end of convolution.
If left as ‘auto’, padding will be automatically computed to conserve the number of columns.


	stride (int) – number of columns to move kernel when computing convolutions. Stride 1 = kernel centred on each column,
stride 2 = kernel centred on ever other column and input size halved, et cetera.


	act (str) – string representation of argument to pass to lookup_act


	bn (bool) – whether to use batch normalisation (order is pre-activation: batchnorm->activation->weights)






	Return type

	Res1DBlock



	Returns

	Instantiated Res1DBlock object










	
abstract get_layers(in_c, act='relu', bn=False, **kargs)

	Abstract function to be overloaded by user. Should return a single torch.nn.Module which accepts the expected input matrix data.


	Return type

	Module










	
get_out_size()

	Get size of output


	Return type

	int



	Returns

	Width of output representation














	
class lumin.nn.models.blocks.head.LorentzBoostNet(cont_feats, vecs, feats_per_vec, n_particles, feat_extractor=None, bn=True, lookup_init=<function lookup_normal_init>, lookup_act=<function lookup_act>, freeze=False, **kargs)

	Bases: lumin.nn.models.blocks.head.AbsMatrixHead

Implementation of the Lorentz Boost Network (https://arxiv.org/abs/1812.09722), which takes 4-momenta for particles and learns new particles and reference
frames from linear combinations of the original particles, and then boosts the new particles into the learned reference frames. Preset kernel functions are
the run over the 4-momenta of the boosted particles to compute a set of veriables per particle. These functions can be based on pairs etc. of particles,
e.g. angles between particles. (LorentzBoostNet.comb provides an index iterator over all paris of particles).

A default feature extractor is provided which returns the (px,py,pz,E) of the boosted particles and the cosine angle between every pair of boosted particle.
This can be overwritten by passing a function to the feat_extractor argument during initialisation, or overidding LorentzBoostNet.feat_extractor.


Important

4-momenta should be supplied without preprocessing, and 4-momenta must be physical (E>=|p|). It is up to the user to ensure this, and not doing so may
result in errors. A BatchNorm argument (bn) is available to preprocess the features extracted from the boosted particles prior to returning them.



Incoming data can either be flat, in which case it is reshaped into a matrix, or be supplied directly in row-wise matrix form.
Matrices should/will be row-wise: each row is a seperate 4-momenta in the form (px,py,pz,E).
Matrix elements are expected to be named according to {particle}_{feature}, e.g. photon_E.
vecs (vectors) should then be a list of particles, i.e. row headers, feature prefixes.
feats_per_vec should be a list of features, i.e. column headers, feature suffixes.


Note

To allow for the fact that there may be nonexistant features (e.g. z-component of missing energy), cont_feats should be a list of all matrix features
which really do exist (i.e. are present in input data), and be in the same order as the incoming data. Nonexistant features will be set zero.




	Parameters

	
	cont_feats (List[str]) – list of all the matrix features which are present in the input data


	vecs (List[str]) – list of objects, i.e. column headers, feature prefixes


	feats_per_vec (List[str]) – list of features per object, i.e. row headers, feature suffixes


	n_particles (int) – the number of particles and reference frames to learn


	feat_extractor (Optional[Callable[[Tensor], Tensor]]) – if not None, will use the argument as the function to extract features from the 4-momenta of the boosted particles.


	bn (bool) – whether batch normalisation should be applied to the extracted features


	lookup_init (Callable[[str, Optional[int], Optional[int]], Callable[[Tensor], None]]) – function taking choice of activation function, number of inputs, and number of outputs an returning a function to initialise layer weights.
Purely for inheritance, unused by class as is.


	lookup_act (Callable[[str], Any]) – function taking choice of activation function and returning an activation function layer. Purely for inheritance, unused by class as is.


	freeze (bool) – whether to start with module parameters set to untrainable.









	Examples::
	>>> lbn = LorentzBoostNet(cont_feats=matrix_feats, feats_per_vec=feats_per_vec,vecs=vecs, n_particles=6)
>>>
>>> def feat_extractor(x:Tensor) -> Tensor:  # Return masses of boosted particles, x dimensions = [batch,particle,4-mom]
...     momenta,energies =  x[:,:,:3], x[:,:,3:]
...     mass = torch.sqrt((energies**2)-torch.sum(momenta**2, dim=-1)[:,:,None])
...     return mass
>>> lbn = InteractionNet(cont_feats=matrix_feats, feats_per_vec=feats_per_vec,vecs=vecs, n_particle=6, feat_extractor=feat_extractor)










	
check_out_sz()

	Automatically computes the output size of the head by passing through random data of the expected shape


	Return type

	int



	Returns

	x.size(-1) where x is the outgoing tensor from the head










	
feat_extractor(x)

	Computes features from boosted particle 4-momenta. Incoming tensor x contains all 4-momenta for all particles for all datapoints in minibatch.
Default function returns 4-momenta and cosine angle between all particles.


	Parameters

	x (Tensor) – 3D incoming tensor with dimensions: [batch, particle, 4-mom (px,py,pz,E)]



	Return type

	Tensor



	Returns

	2D tensor with dimensions [batch, features]










	
forward(x)

	Passes input through the LB network and aggregates down to a flat tensor via the feature extractor, optionally passing through a batchnorm layer.


	Parameters

	x (Union[Tensor, Tuple[Tensor, Tensor]]) – If a tuple, the second element is assumed to the be the matrix data. If a flat tensor, will conver the data to a matrix



	Return type

	Tensor



	Returns

	Resulting tensor










	
get_out_size()

	Get size of output


	Return type

	int



	Returns

	Width of output representation














	
class lumin.nn.models.blocks.head.AutoExtractLorentzBoostNet(cont_feats, vecs, feats_per_vec, n_particles, depth, width, n_singles=0, n_pairs=0, act='swish', do=0, bn=False, lookup_init=<function lookup_normal_init>, lookup_act=<function lookup_act>, freeze=False, **kargs)

	Bases: lumin.nn.models.blocks.head.LorentzBoostNet

Modified version of :class:`~lumin.nn.models.blocks.head.LorentzBoostNet (implementation of the Lorentz Boost Network (https://arxiv.org/abs/1812.09722)).
Rather than relying on fixed kernel functions to extract features from the boosted paricles, the functions are learnt during training via neural networks.

Two netrowks are used, one to extract n_singles features from each particle and another to extract n_pairs features from each pair of particles.


Important

4-momenta should be supplied without preprocessing, and 4-momenta must be physical (E>=|p|). It is up to the user to ensure this, and not doing so may
result in errors. A BatchNorm argument (bn) is available to preprocess the 4-momenta of the boosted particles prior to passing them through the neural
networks



Incoming data can either be flat, in which case it is reshaped into a matrix, or be supplied directly in row-wise matrix form.
Matrices should/will be row-wise: each row is a seperate 4-momenta in the form (px,py,pz,E).
Matrix elements are expected to be named according to {particle}_{feature}, e.g. photon_E.
vecs (vectors) should then be a list of particles, i.e. row headers, feature prefixes.
feats_per_vec should be a list of features, i.e. column headers, feature suffixes.


Note

To allow for the fact that there may be nonexistant features (e.g. z-component of missing energy), cont_feats should be a list of all matrix features
which really do exist (i.e. are present in input data), and be in the same order as the incoming data. Nonexistant features will be set zero.




	Parameters

	
	cont_feats (List[str]) – list of all the matrix features which are present in the input data


	vecs (List[str]) – list of objects, i.e. column headers, feature prefixes


	feats_per_vec (List[str]) – list of features per object, i.e. row headers, feature suffixes


	n_particles (int) – the number of particles and reference frames to learn


	depth (int) – the number of hidden layers in each network


	width (int) – the number of neurons per hidden layer


	n_singles (int) – the number of features to extract per individual particle


	n_pairs (int) – the number of features to extract per pair of particles


	act (str) – string representation of argument to pass to lookup_act. Activation should ideally have non-zero outputs to help deal with poorly normalised inputs


	do (float) – dropout rate for use in networks


	bn (bool) – whether to use batch normalisation within networks. Inputs are passed through BN regardless of setting.


	lookup_init (Callable[[str, Optional[int], Optional[int]], Callable[[Tensor], None]]) – function taking choice of activation function, number of inputs, and number of outputs an returning a function to initialise layer weights.


	lookup_act (Callable[[str], Any]) – function taking choice of activation function and returning an activation function layer.


	freeze (bool) – whether to start with module parameters set to untrainable.









	Examples::
	>>> aelbn = AutoExtractLorentzBoostNet(cont_feats=matrix_feats, feats_per_vec=feats_per_vec,vecs=vecs, n_particles=6,
                                       depth=3, width=10, n_singles=3, n_pairs=2)










	
feat_extractor(x)

	Computes features from boosted particle 4-momenta. Incoming tensor x contains all 4-momenta for all particles for all datapoints in minibatch.
single_nn broadcast to all boosted particles, and pair_nn broadcast to all paris of particles. Returned features are concatenated together.


	Parameters

	x (Tensor) – 3D incoming tensor with dimensions: [batch, particle, 4-mom (px,py,pz,E)]



	Return type

	Tensor



	Returns

	2D tensor with dimensions [batch, features]
















lumin.nn.models.blocks.tail module


	
class lumin.nn.models.blocks.tail.ClassRegMulti(n_in, n_out, objective, y_range=None, bias_init=None, y_mean=None, y_std=None, lookup_init=<function lookup_normal_init>, freeze=False)

	Bases: lumin.nn.models.blocks.tail.AbsTail

Output block for (multi(class/label)) classification or regression tasks.
Designed to be passed as a ‘tail’ to ModelBuilder.
Takes output size of network body and scales it to required number of outputs.
For regression tasks, y_range can be set with per-output minima and maxima. The outputs are then adjusted according to ((y_max-y_min)*x)+self.y_min, where x
is the output of the network passed through a sigmoid function. Effectively allowing regression to be performed without normalising and standardising the
target values. Note it is safest to allow some leaway in setting the min and max, e.g. max = 1.2*max, min = 0.8*min
Output activation function is automatically set according to objective and y_range.


	Parameters

	
	n_in (int) – number of inputs to expect


	n_out (int) – number of outputs required


	objective (str) – string representation of network objective, i.e. ‘classification’, ‘regression’, ‘multiclass’


	y_range (Union[Tuple, ndarray, None]) – if not None, will apply rescaling to network outputs: x = ((y_range[1]-y_range[0])*sigmoid(x))+y_range[0].
Incompatible with y_mean and y_std


	bias_init (Optional[float]) – specify an intial bias for the output neurons. Otherwise default values of 0 are used, except for multiclass objectives, which use 1/n_out


	y_mean (Union[float, List[float], ndarray, None]) – if sepcified along with y_std, will apply rescaling to network outputs: x = (y_std*x)+y_mean.
Incopmpatible with y_range


	y_std (Union[float, List[float], ndarray, None]) – if sepcified along with y_mean, will apply rescaling to network outputs: x = (y_std*x)+y_mean.
Incopmpatible with y_range


	lookup_init (Callable[[str, Optional[int], Optional[int]], Callable[[Tensor], None]]) – function taking string representation of activation function, number of inputs, and number of outputs an returning a function to initialise
layer weights.









	Examples::
	>>> tail = ClassRegMulti(n_in=100, n_out=1, objective='classification')
>>>
>>> tail = ClassRegMulti(n_in=100, n_out=5, objective='multiclass')
>>>
>>> y_range = (0.8*targets.min(), 1.2*targets.max())
>>> tail = ClassRegMulti(n_in=100, n_out=1, objective='regression',
...                      y_range=y_range)
>>>
>>> min_targs = np.min(targets, axis=0).reshape(targets.shape[1],1)
>>> max_targs = np.max(targets, axis=0).reshape(targets.shape[1],1)
>>> min_targs[min_targs > 0] *=0.8
>>> min_targs[min_targs < 0] *=1.2
>>> max_targs[max_targs > 0] *=1.2
>>> max_targs[max_targs < 0] *=0.8
>>> y_range = np.hstack((min_targs, max_targs))
>>> tail = ClassRegMulti(n_in=100, n_out=6, objective='regression',
...                      y_range=y_range,
...                      lookup_init=lookup_uniform_init)










	
forward(x)

	Pass tensor through block


	Parameters

	x (Tensor) – input tensor






	Returns
	Resulting tensor






	Return type

	Tensor










	
get_out_size()

	Get size width of output layer


	Return type

	int



	Returns

	Width of output layer
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lumin.nn.models.layers package


Submodules




lumin.nn.models.layers.activations module


	
lumin.nn.models.layers.activations.lookup_act(act)

	Map activation name to class


	Parameters

	act (str) – string representation of activation function



	Return type

	Any



	Returns

	Class implementing requested activation function










	
class lumin.nn.models.layers.activations.Swish(inplace=False)

	Bases: torch.nn.modules.module.Module

Non-trainable Swish activation function https://arxiv.org/abs/1710.05941


	Parameters

	inplace – whether to apply activation inplace






	Examples::
	>>> swish = Swish()










	
forward(x)

	Pass tensor through Swish function


	Parameters

	x (Tensor) – incoming tensor



	Return type

	Tensor



	Returns

	Resulting tensor
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lumin.nn.training package


Submodules




lumin.nn.training.fold_train module


	
lumin.nn.training.fold_train.fold_train_ensemble(fy, n_models, bs, model_builder, callback_partials=None, eval_metrics=None, train_on_weights=True, eval_on_weights=True, patience=10, max_epochs=200, shuffle_fold=True, shuffle_folds=True, bulk_move=True, live_fdbk=True, live_fdbk_first_only=True, live_fdbk_extra=True, live_fdbk_extra_first_only=False, savepath=PosixPath('train_weights'), verbose=False, log_output=False, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Main training method for Model.
Trains a specified numer of models created by a ModelBuilder on data provided by a
FoldYielder, and save them to savepath.
Note, this does not return trained models, instead they are saved and must be loaded later. Instead this method returns results of model training.
Each Model is trained on N-1 folds, for a FoldYielder with N folds, and the remaining
fold is used as validation data.
Training folds are loaded iteratively, and model evaluation takes place after each fold use (a sub-epoch), rather than after ever use of all folds (epoch).
Training continues until:



	All of the training folds are used max_epoch number of times;


	Or validation loss does not decrease for patience number of training folds;
(or cycles, if using an AbsCyclicCallback);


	Or a callback triggers trainign to stop, e.g. OneCycle







Depending on the live_fdbk arguments, live plots of losses and other metrics may be shown during training, if running in Jupyter. By default, a live plot
with extra information will be shown for training the first model, and afterwards no live plots will be shown. Shoing the live plot slightly slows down the
training, but can help highlight problems without having to wait to the end. Thererfore this compromises between showing useful information and training
speed, since any problems should hopefully be visible in the first model.

Once training is finished, the state with the lowest validation loss is loaded, evaluated, and saved.


	Parameters

	
	fy (FoldYielder) – FoldYielder interfacing ot training data


	n_models (int) – number of models to train


	bs (int) – batch size. Number of data points per iteration


	model_builder (ModelBuilder) – ModelBuilder creating the networks to train


	callback_partials (Optional[List[partial]]) – optional list of functools.partial, each of which will a instantiate Callback when called


	eval_metrics (Optional[Dict[str, EvalMetric]]) – list of instantiated EvalMetric.
At the end of training, validation data and model predictions will be passed to each, and the results printed and saved


	train_on_weights (bool) – If weights are present in training data, whether to pass them to the loss function during training


	eval_on_weights (bool) – If weights are present in validation data, whether to pass them to the loss function during validation


	patience (int) – number of folds (sub-epochs) or cycles to train without decrease in validation loss before ending training (early stopping)


	max_epochs (int) – maximum number of epochs for which to train


	live_fdbk (bool) – whether or not to show any live feedback at all during training (slightly slows down training, but helps spot problems)


	live_fdbk_first_only (bool) – whether to only show live feedback for the first model trained (trade off between time and problem spotting)


	live_fdbk_extra (bool) – whether to show extra information live feedback (further slows training)


	live_fdbk_extra_first_only (bool) – whether to only show extra live feedback information for the first model trained (trade off between time and information)


	shuffle_fold (bool) – whether to tell BatchYielder to shuffle data


	shuffle_folds (bool) – whether to shuffle the order of the training folds


	bulk_move (bool) – whether to pass all training data to device at once, or by minibatch. Bulk moving will be quicker, but may not fit in memory.


	savepath (Path) – path to to which to save model weights and results


	verbose (bool) – whether to print out extra information during training


	log_output (bool) – whether to save printed results to a log file rather than printing them


	plot_settings (PlotSettings) – PlotSettings class to control figure appearance






	Return type

	Tuple[List[Dict[str, float]], List[Dict[str, List[float]]], List[Dict[str, float]]]



	Returns

	
	results list of validation losses and other eval_metrics results, ordered by model training. Can be used to create an Ensemble.


	histories list of loss histories, ordered by model training


	cycle_losses if an AbsCyclicCallback was passed, list of validation losses at the end of each cycle, ordered by model training. Can be passed to Ensemble.

















lumin.nn.training.metric_logger module


	
class lumin.nn.training.metric_logger.MetricLogger(loss_names, n_folds, autolog_scale=True, extra_detail=True, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Bases: object

Provides live feedback during training showing a variety of metrics to help highlight problems or test hyper-parameters without completing a full training.


	Parameters

	
	loss_names (List[str]) – List of names of losses which will be passed to the logger in the order in which they will be passed.
By convention the first name will be used as the training loss when computing the ratio of training to validation losses


	n_folds (int) – Number of folds present in the training data.
The logger assumes that one of these folds is for validation, and so 1 training epoch = (n_fold-1) folds.


	autolog_scale (bool) – Whether to automatically change the scale of the y-axis for loss to logarithmic when the current loss drops below one 50th of its
starting value


	extra_detail (bool) – Whether to include extra detail plots (loss velocity and training validation ratio), slight slower but potentially useful.


	plot_settings (PlotSettings) – PlotSettings class to control figure appearance









	Examples::
	>>> metric_log = MetricLogger(loss_names=['Train', 'Validation'], n_folds=train_fy.n_folds)
>>> val_losses = []
>>> metric_log.reset()  # Initialises plots and variables
>>> for epoch in epochs:
>>>     for fold in train_folds:
>>>         # train for one fold (subepoch)
>>>         metric_log.update_vals([train_loss, val_loss], best=best_val_loss)
>>>     metric_log.update_plot()
>>> plt.clf()










	
add_loss_name(name)

	Adds an additional loss name to the loss names displayed. The associated losses will be set to zero for any prior subepochs which have elapsed already.


	Parameters

	name (str) – name of loss to be added



	Return type

	None










	
reset()

	Resets/initialises the logger’s values and plots, and produces a placeholder plot. Should be called prior to update_vals or update_plot.


	Return type

	None










	
update_plot(best=None)

	Updates the plot(s), Optionally showing the user-chose best loss achieved.


	Parameters

	best (Optional[float]) – the value of the best loss achieved so far



	Return type

	None










	
update_vals(vals)

	Appends values to the losses. This is interpreted as one subepoch having elapsed (i.e. one training fold).


	Parameters

	vals (List[float]) – loss values from the last subepoch in the order of loss_names



	Return type

	None
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lumin.optimisation package


Submodules




lumin.optimisation.features module


	
lumin.optimisation.features.get_rf_feat_importance(rf, inputs, targets, weights=None)

	Compute feature importance for a Random Forest model using rfpimp.


	Parameters

	
	rf (Union[RandomForestRegressor, RandomForestClassifier]) – trained Random Forest model


	inputs (DataFrame) – input data as Pandas DataFrame


	targets (ndarray) – target data as Numpy array


	weights (Optional[ndarray]) – Optional data weights as Numpy array






	Return type

	DataFrame










	
lumin.optimisation.features.rf_rank_features(train_df, val_df, objective, train_feats, targ_name='gen_target', wgt_name=None, importance_cut=0.0, n_estimators=40, rf_params=None, optimise_rf=True, n_rfs=1, n_max_display=30, plot_results=True, retrain_on_import_feats=True, verbose=True, savename=None, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Compute relative permutation importance of input features via using Random Forests.
A reduced set of ‘important features’ is obtained by cutting on relative importance and a new model is trained and evaluated on this reduced set.
RFs will have their hyper-parameters roughly optimised, both when training on all features and once when training on important features.
Relative importances may be computed multiple times (via n_rfs) and averaged. In which case the standard error is also computed.


	Parameters

	
	train_df (DataFrame) – training data as Pandas DataFrame


	val_df (DataFrame) – validation data as Pandas DataFrame


	objective (str) – string representation of objective: either ‘classification’ or ‘regression’


	train_feats (List[str]) – complete list of training features


	targ_name (str) – name of column containing target data


	wgt_name (Optional[str]) – name of column containing weight data. If set, will use weights for training and evaluation, otherwise will not


	importance_cut (float) – minimum importance required to be considered an ‘important feature’


	n_estimators (int) – number of trees to use in each forest


	rf_params (Optional[Dict[str, Any]]) – optional dictionary of keyword parameters for SK-Learn Random Forests
Or ordered dictionary mapping parameters to optimise to list of values to consider
If None and will optimise parameters using lumin.optimisation.hyper_param.get_opt_rf_params()


	optimise_rf (bool) – if true will optimise RF params, passing rf_params to get_opt_rf_params()


	n_rfs (int) – number of trainings to perform on all training features in order to compute importances


	n_max_display (int) – maximum number of features to display in importance plot


	plot_results (bool) – whether to plot the feature importances


	retrain_on_import_feats (bool) – whether to train a new model on important features to compare to full model


	verbose (bool) – whether to report results and progress


	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances


	plot_settings (PlotSettings) – PlotSettings class to control figure appearance






	Return type

	List[str]



	Returns

	List of features passing importance_cut, ordered by decreasing importance










	
lumin.optimisation.features.rf_check_feat_removal(train_df, objective, train_feats, check_feats, targ_name='gen_target', wgt_name=None, val_df=None, subsample_rate=None, strat_key=None, n_estimators=40, n_rfs=1, rf_params=None)

	Checks whether features can be removed from the set of training features without degrading model performance using Random Forests
Computes scores for model with all training features then for each feature listed in check_feats computes scores for a model trained on all training
features except that feature
E.g. if two features are highly correlated this function could be used to check whether one of them could be removed.


	Parameters

	
	train_df (DataFrame) – training data as Pandas DataFrame


	objective (str) – string representation of objective: either ‘classification’ or ‘regression’


	train_feats (List[str]) – complete list of training features


	check_feats (List[str]) – list of features to try removing


	targ_name (str) – name of column containing target data


	wgt_name (Optional[str]) – name of column containing weight data. If set, will use weights for training and evaluation, otherwise will not


	val_df (Optional[DataFrame]) – optional validation data as Pandas DataFrame.
If set will compute validation scores in addition to Out Of Bag scores
And will optimise RF parameters if rf_params is None


	subsample_rate (Optional[float]) – if set, will subsample the training data to the provided fraction. Subsample is repeated per Random Forest training


	strat_key (Optional[str]) – column name to use for stratified subsampling, if desired


	n_estimators (int) – number of trees to use in each forest


	n_rfs (int) – number of trainings to perform on all training features in order to compute importances


	rf_params (Optional[Dict[str, Any]]) – optional dictionary of keyword parameters for SK-Learn Random Forests
If None and val_df is None will use default parameters of ‘min_samples_leaf’:3, ‘max_features’:0.5
Elif None and val_df is not None will optimise parameters using lumin.optimisation.hyper_param.get_opt_rf_params()






	Return type

	Dict[str, float]



	Returns

	Dictionary of results










	
lumin.optimisation.features.repeated_rf_rank_features(train_df, val_df, n_reps, min_frac_import, objective, train_feats, targ_name='gen_target', wgt_name=None, strat_key=None, subsample_rate=None, resample_val=True, importance_cut=0.0, n_estimators=40, rf_params=None, optimise_rf=True, n_rfs=1, n_max_display=30, n_threads=1, savename=None, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Runs rf_rank_features() multiple times on bootstrap resamples of training data and computes the fraction of times each
feature passes the importance cut.
Then returns a list features which are have a fractional selection as important great than some number.
I.e. in cases where rf_rank_features() can be unstable (list of important features changes each run), this method can be
used to help stabailse the list of important features


	Parameters

	
	train_df (DataFrame) – training data as Pandas DataFrame


	val_df (DataFrame) – validation data as Pandas DataFrame


	n_reps (int) – number of times to resample and run rf_rank_features()


	min_frac_import (float) – minimum fraction of times feature must be selected as important by rf_rank_features() in order to be
considered generally important


	objective (str) – string representation of objective: either ‘classification’ or ‘regression’


	train_feats (List[str]) – complete list of training features


	targ_name (str) – name of column containing target data


	wgt_name (Optional[str]) – name of column containing weight data. If set, will use weights for training and evaluation, otherwise will not


	strat_key (Optional[str]) – name of column to use to stratify data when resampling


	subsample_rate (Optional[float]) – if set, will subsample the training data to the provided fraction. Subsample is repeated per Random Forest training


	resample_val (bool) – whether to also resample the validation set, or use the original set for all evaluations


	importance_cut (float) – minimum importance required to be considered an ‘important feature’


	n_estimators (int) – number of trees to use in each forest


	rf_params (Optional[Dict[str, Any]]) – optional dictionary of keyword parameters for SK-Learn Random Forests
Or ordered dictionary mapping parameters to optimise to list of values to consider
If None and will optimise parameters using lumin.optimisation.hyper_param.get_opt_rf_params()


	optimise_rf (bool) – if true will optimise RF params, passing rf_params to get_opt_rf_params()


	n_rfs (int) – number of trainings to perform on all training features in order to compute importances


	n_max_display (int) – maximum number of features to display in importance plot


	n_threads (int) – number of rankings to run simultaneously


	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances


	plot_settings (PlotSettings) – PlotSettings class to control figure appearance






	Return type

	Tuple[List[str], DataFrame]



	Returns

	
	List of features with fractional selection greater than min_frac_import, ordered by decreasing fractional selection


	DataFrame of number of selections and fractional selections for all features















	
lumin.optimisation.features.auto_filter_on_linear_correlation(train_df, val_df, check_feats, objective, targ_name, strat_key=None, wgt_name=None, corr_threshold=0.8, n_estimators=40, rf_params=None, optimise_rf=True, n_rfs=5, subsample_rate=None, savename=None, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Filters a list of possible training features by identifying pairs of linearly correlated features and then attempting to remove either feature from each
pair by checking whether doing so would not decrease the performance Random Forests trained to perform classification or regression.

Linearly correlated features are identified by computing Spearman’s rank-order correlation coefficients for every pair of features. Hierachical clustering
is then used to group features. Clusters of features with a correlation coefficient greater than a set threshold are candidates for removal.
Candidate sets of features are tested, in order of decreasing correlation, by computing the mean performance of a Random Forests trained on all remaining
training features and all remaining training features except each feature in the set in turn.
If the RF trained on all remaining features consistently outperforms the other trainings, then no feature from the set is removed, otherwise the
feature whose removal causes the largest mean increase in performance is removed. This test is then repeated on the remaining features in the set, until
either no features are removed, or only one feature remains.

Since this function involves training many models, it can be slow on large datasets. In such cases one can use the subsample_rate argument to sample
randomly a fraction of the whole dataset (with optionaly stratification). Resampling is performed prior to each RF training for maximum genralisation, and
any weights in the data are automatically renormalised to the original weight sum (within each class).


Attention

This function combines plot_rank_order_dendrogram() with
rf_check_feat_removal(). This is purely for convenience and should not be treated as a ‘black box’. We encourage users to
convince themselves that it is really is reasonable to remove the features which are identified as redundant.




	Parameters

	
	train_df (DataFrame) – training data as Pandas DataFrame


	val_df (DataFrame) – validation data as Pandas DataFrame


	check_feats (List[str]) – complete list of features to consider for training and removal


	objective (str) – string representation of objective: either ‘classification’ or ‘regression’


	targ_name (str) – name of column containing target data


	strat_key (Optional[str]) – name of column to use to stratify data when resampling


	wgt_name (Optional[str]) – name of column containing weight data. If set, will use weights for training and evaluation, otherwise will not


	corr_threshold (float) – minimum threshold on Spearman’s rank-order correlation coefficient for pairs to be considered ‘correlated’


	n_estimators (int) – number of trees to use in each forest


	rf_params (Optional[Dict[~KT, ~VT]]) – either: a dictionare of keyword hyper-parameters to use for the Random Forests, if optimse_rf is False;
or an OrderedDict of a range of hyper-parameters to test during optimisation. See get_opt_rf_params() for
more details.


	optimise_rf (bool) – whether to optimise the Random Forest hyper-parameters for the (sub-sambled) dataset


	n_rfs (int) – number of trainings to perform during each perfromance impact test


	subsample_rate (Optional[float]) – float between 0 and 1. If set will subsample the trainng data to the requested fraction


	savename (Optional[str]) – Optional name of file to which to save the first plot of feature clustering


	plot_settings (PlotSettings) – PlotSettings class to control figure appearance






	Return type

	List[str]



	Returns

	Filtered list of training features










	
lumin.optimisation.features.auto_filter_on_mutual_dependence(train_df, val_df, check_feats, objective, targ_name, strat_key=None, wgt_name=None, md_threshold=0.8, n_estimators=40, rf_params=None, optimise_rf=True, n_rfs=5, subsample_rate=None, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Filters a list of possible training features via mutual dependence: By identifying features whose values can be accurately predicted using the other
features. Features with a high ‘dependence’ are then checked to see whether removing them would not decrease the performance Random Forests trained to
perform classification or regression. For best results, the features to check should be supplied in order to decreasing importance.

Dependent features are identified by training Random Forest regressors on the other features. Features with a dependence greater than a set threshold are
candidates for removal. Candidate features are tested, in order of increasing importance, by computing the mean performance of a Random Forests trained on:
all remaining training features; and all remaining training features except the candidate feature.
If the RF trained on all remaining features except the candidate feature consistently outperforms or matches the training which uses all remaining features,
then the candidate feature is removed, otherwise the feature remains and is no longer tested.

Since evaluating the mutual dependence via regression then allows the important features used by the regressor to be identified, it is possible to test
multiple feature removals at once, provided a removal candidate is not important for predicting another removal candidate.

Since this function involves training many models, it can be slow on large datasets. In such cases one can use the subsample_rate argument to sample
randomly a fraction of the whole dataset (with optionaly stratification). Resampling is performed prior to each RF training for maximum genralisation, and
any weights in the data are automatically renormalised to the original weight sum (within each class).


Attention

This function combines RFPImp’s feature_dependence_matrix with rf_check_feat_removal().
This is purely for convenience and should not be treated as a ‘black box’. We encourage users to convince themselves that it is really is reasonable to
remove the features which are identified as redundant.




Note

Technicalities related to RFPImp’s use of SVG for plots mean that the mutual dependence plots can have low resolution when shown or saved.
Therefore this function does not take a savename argument. Users wiching to save the plots as PNG or PDF should compute the dependence matrix themselves
using feature_dependence_matrix and then plot using plot_dependence_heatmap, calling .save([savename]) on the retunred object. The plotting backend
might need to be set to SVG, using: %config InlineBackend.figure_format = ‘svg’.




	Parameters

	
	train_df (DataFrame) – training data as Pandas DataFrame


	val_df (DataFrame) – validation data as Pandas DataFrame


	check_feats (List[str]) – complete list of features to consider for training and removal


	objective (str) – string representation of objective: either ‘classification’ or ‘regression’


	targ_name (str) – name of column containing target data


	strat_key (Optional[str]) – name of column to use to stratify data when resampling


	wgt_name (Optional[str]) – name of column containing weight data. If set, will use weights for training and evaluation, otherwise will not


	md_threshold (float) – minimum threshold on the mutual dependence coefficient for a feature to be considered ‘predictable’


	n_estimators (int) – number of trees to use in each forest


	rf_params (Optional[OrderedDict]) – either: a dictionare of keyword hyper-parameters to use for the Random Forests, if optimse_rf is False;
or an OrderedDict of a range of hyper-parameters to test during optimisation. See get_opt_rf_params() for
more details.


	optimise_rf (bool) – whether to optimise the Random Forest hyper-parameters for the (sub-sambled) dataset


	n_rfs (int) – number of trainings to perform during each perfromance impact test


	subsample_rate (Optional[float]) – float between 0 and 1. If set will subsample the trainng data to the requested fraction


	plot_settings (PlotSettings) – PlotSettings class to control figure appearance






	Return type

	List[str]



	Returns

	Filtered list of training features












lumin.optimisation.hyper_param module


	
lumin.optimisation.hyper_param.get_opt_rf_params(x_trn, y_trn, x_val, y_val, objective, w_trn=None, w_val=None, params=None, n_estimators=40, verbose=True)

	Use an ordered parameter-scan to roughly optimise Random Forest hyper-parameters.


	Parameters

	
	x_trn (ndarray) – training input data


	y_trn (ndarray) – training target data


	x_val (ndarray) – validation input data


	y_val (ndarray) – validation target data


	objective (str) – string representation of objective: either ‘classification’ or ‘regression’


	w_trn (Optional[ndarray]) – training weights


	w_val (Optional[ndarray]) – validation weights


	params (Optional[OrderedDict]) – ordered dictionary mapping parameters to optimise to list of values to cosnider


	n_estimators (int) – number of trees to use in each forest


	verbose – Print extra information and show a live plot of model performance






	Returns

	dictionary mapping parameters to their optimised values
rf: best performing Random Forest



	Return type

	params










	
lumin.optimisation.hyper_param.fold_lr_find(fy, model_builder, bs, train_on_weights=True, shuffle_fold=True, n_folds=-1, lr_bounds=[1e-05, 10], callback_partials=None, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>, bulk_move=True, plot_savename=None)

	Wrapper function for training using LRFinder which runs a Smith LR range test (https://arxiv.org/abs/1803.09820)
using folds in FoldYielder.
Trains models for 1 fold, interpolating LR between set bounds. This repeats for each fold in FoldYielder, and loss
evolution is averaged.


	Parameters

	
	fy (FoldYielder) – FoldYielder providing training data


	model_builder (ModelBuilder) – ModelBuilder providing networks and optimisers


	bs (int) – batch size


	train_on_weights (bool) – If weights are present, whether to use them for training


	shuffle_fold (bool) – whether to shuffle data in folds


	n_folds (int) – if >= 1, will only train n_folds number of models, otherwise will train one model per fold


	lr_bounds (Tuple[float, float]) – starting and ending LR values


	callback_partials (Optional[List[partial]]) – optional list of functools.partial, each of which will a instantiate Callback when called


	plot_settings (PlotSettings) – PlotSettings class to control figure appearance


	savename – Optional name of file to which to save the plot






	Return type

	List[LRFinder]



	Returns

	List of LRFinder which were used for each model trained












lumin.optimisation.threshold module


	
lumin.optimisation.threshold.binary_class_cut_by_ams(df, top_perc=5.0, min_pred=0.9, wgt_factor=1.0, br=0.0, syst_unc_b=0.0, pred_name='pred', targ_name='gen_target', wgt_name='gen_weight', plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Optimise a cut on a signal-background classifier prediction by the Approximate Median Significance
Cut which should generalise better by taking the mean class prediction of the top top_perc percentage of points as ranked by AMS


	Parameters

	
	df (DataFrame) – Pandas DataFrame containing data


	top_perc (float) – top percentage of events to consider as ranked by AMS


	min_pred (float) – minimum prediction to consider


	wgt_factor (float) – single multiplicative coeficient for rescaling signal and background weights before computing AMS


	br (float) – background offset bias


	syst_unc_b (float) – fractional systemtatic uncertainty on background


	pred_name (str) – column to use as predictions


	targ_name (str) – column to use as truth labels for signal and background


	wgt_name (str) – column to use as weights for signal and background events


	plot_settings (PlotSettings) – PlotSettings class to control figure appearance






	Return type

	Tuple[float, float, float]



	Returns

	Optimised cut
AMS at cut
Maximum AMS












Module contents







          

      

      

    

  

    
      
          
            
  
lumin.plotting package


Submodules




lumin.plotting.data_viewing module


	
lumin.plotting.data_viewing.plot_feat(df, feat, wgt_name=None, cuts=None, labels='', plot_bulk=True, n_samples=100000, plot_params=None, size='mid', show_moments=True, ax_labels={'x': None, 'y': 'Density'}, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	A flexible function to provide indicative information about the 1D distribution of a feature.
By default it will produce a weighted KDE+histogram for the [1,99] percentile of the data,
as well as compute the mean and standard deviation of the data in this region.
Distributions are weighted by sampling with replacement the data with probabilities propotional to the sample weights.
By passing a list of cuts and labels, it will plot multiple distributions of the same feature for different cuts.
Since it is designed to provide quick, indicative information, more specific functions (such as plot_kdes_from_bs)
should be used to provide final results.


Important

NaN and Inf values are removed prior to plotting and no attempt is made to coerce them to real numbers




	Parameters

	
	df (DataFrame) – Pandas DataFrame containing data


	feat (str) – column name to plot


	wgt_name (Optional[str]) – if set, will use column to weight data


	cuts (Optional[List[Series]]) – optional list of cuts to apply to feature. Will add one KDE+hist for each cut listed on the same plot


	labels (Optional[List[str]]) – optional list of labels for each KDE+hist


	plot_bulk (bool) – whether to plot the [1,99] percentile of the data, or all of it


	n_samples (int) – if plotting weighted distributions, how many samples to use


	plot_params (Union[Dict[str, Any], List[Dict[str, Any]], None]) – optional list of of arguments to pass to Seaborn Distplot for each KDE+hist


	size (str) – string to pass to str2sz() to determin size of plot


	show_moments (bool) – whether to compute and display the mean and standard deviation


	ax_labels (Dict[str, Any]) – dictionary of x and y axes labels


	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances


	settings (PlotSettings) – PlotSettings class to control figure appearance






	Return type

	None










	
lumin.plotting.data_viewing.compare_events(events)

	Plots at least two events side by side in their transverse and longitudinal projections


	Parameters

	events (list) – list of DataFrames containing vector coordinates for 3 momenta



	Return type

	None










	
lumin.plotting.data_viewing.plot_rank_order_dendrogram(df, threshold=0.8, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Plots a dendrogram of features in df clustered via Spearman’s rank correlation coefficient.
Also returns a sets of features with correlation coefficients greater than the threshold


	Parameters

	
	df (DataFrame) – Pandas DataFrame containing data


	threshold (float) – Threshold on correlation coefficient


	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances


	settings (PlotSettings) – PlotSettings class to control figure appearance






	Return type

	Dict[str, Union[List[str], float]]



	Returns

	Dict of sets of features with correlation coefficients greater than the threshold and cluster distance










	
lumin.plotting.data_viewing.plot_kdes_from_bs(x, bs_stats, name2args, feat, units=None, moments=True, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Plots KDEs computed via bootstrap_stats()


	Parameters

	
	bs_stats (Dict[str, Any]) – (filtered) dictionary retruned by bootstrap_stats()


	name2args (Dict[str, Dict[str, Any]]) – Dictionary mapping names of different distributions to arguments to pass to seaborn tsplot


	feat (str) – Name of feature being plotted (for axis lablels)


	units (Optional[str]) – Optional units to show on axes


	moments – whether to display mean and standard deviation of each distribution


	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances


	settings (PlotSettings) – PlotSettings class to control figure appearance






	Return type

	None










	
lumin.plotting.data_viewing.plot_binary_sample_feat(df, feat, targ_name='gen_target', wgt_name='gen_weight', sample_name='gen_sample', wgt_scale=1, bins=None, log_y=False, lim_x=None, density=True, feat_name=None, units=None, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	More advanced plotter for feature distributions in a binary class problem with stacked distributions for backgrounds and user-defined binning
Note that plotting colours can be controled by seeting the settings.sample2col dictionary


	Parameters

	
	df (DataFrame) – DataFrame with targets and predictions


	feat (str) – name of column to plot the distribution of


	targ_name (str) – name of column to use as targets


	wgt_name (str) – name of column to use as sample weights


	sample_name (str) – name of column to use as process names


	wgt_scale (float) – applies a global multiplicative rescaling to sample weights. Default 1 = no rescaling. Only applicable when density = False


	bins (Union[int, List[int], None]) – either the number of bins to use for a uniform binning, or a list of bin edges for a variable-width binning


	log_y (bool) – whether to use a log scale for the y-axis


	lim_x (Optional[Tuple[float, float]]) – limit for plotting on the x-axis


	density – whether to normalise each distribution to one, or keep set to sum of weights / datapoints


	feat_name (Optional[str]) – Name of feature to put on x-axis, can be in LaTeX.


	units (Optional[str]) – units used to measure feature, if applicable. Can be in LaTeX, but should not include ‘$’.


	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances


	settings (PlotSettings) – PlotSettings class to control figure appearance






	Return type

	None












lumin.plotting.interpretation module


	
lumin.plotting.interpretation.plot_importance(df, feat_name='Feature', imp_name='Importance', unc_name='Uncertainty', threshold=None, x_lbl='Importance via feature permutation', savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Plot feature importances as computted via get_nn_feat_importance, get_ensemble_feat_importance, or rf_rank_features


	Parameters

	
	df (DataFrame) – DataFrame containing columns of features, importances and, optionally, uncertainties


	feat_name (str) – column name for features


	imp_name (str) – column name for importances


	unc_name (str) – column name for uncertainties (if present)


	threshold (Optional[float]) – if set, will draw a line at the threshold hold used for feature importance


	x_lbl (str) – label to put on the x-axis


	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances


	settings (PlotSettings) – PlotSettings class to control figure appearance






	Return type

	None










	
lumin.plotting.interpretation.plot_embedding(embed, feat, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Visualise weights in provided categorical entity-embedding matrix


	Parameters

	
	embed (OrderedDict) – state_dict of trained nn.Embedding


	feat (str) – name of feature embedded


	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances


	settings (PlotSettings) – PlotSettings class to control figure appearance






	Return type

	None










	
lumin.plotting.interpretation.plot_1d_partial_dependence(model, df, feat, train_feats, ignore_feats=None, input_pipe=None, sample_sz=None, wgt_name=None, n_clusters=10, n_points=20, pdp_isolate_kargs=None, pdp_plot_kargs=None, y_lim=None, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Wrapper for PDPbox to plot 1D dependence of specified feature using provided NN or RF.
If features have been preprocessed using an SK-Learn Pipeline, then that can be passed in order to rescale the x-axis back to its original values.


	Parameters

	
	model (Any) – any trained model with a .predict method


	df (DataFrame) – DataFrame containing training data


	feat (str) – feature for which to evaluate the partial dependence of the model


	train_feats (List[str]) – list of all training features including ones which were later ignored, i.e. input features considered when input_pipe was fitted


	ignore_feats (Optional[List[str]]) – features present in training data which were not used to train the model (necessary to correctly deprocess feature using input_pipe)


	input_pipe (Optional[Pipeline]) – SK-Learn Pipeline which was used to process the training data


	sample_sz (Optional[int]) – if set, will only compute partial dependence on a random sample with replacement of the training data, sampled according to weights (if set).
Speeds up computation and allows weighted partial dependencies to computed.


	wgt_name (Optional[str]) – Optional column name to use as sampling weights


	n_points (int) – number of points at which to evaluate the model output, passed to pdp_isolate as num_grid_points


	n_clusters (Optional[int]) – number of clusters in which to group dependency lines. Set to None to show all lines


	pdp_isolate_kargs (Optional[Dict[str, Any]]) – optional dictionary of keyword arguments to pass to pdp_isolate


	pdp_plot_kargs (Optional[Dict[str, Any]]) – optional dictionary of keyword arguments to pass to pdp_plot


	y_lim (Union[Tuple[float, float], List[float], None]) – If set, will limit y-axis plot range to tuple


	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances


	settings (PlotSettings) – PlotSettings class to control figure appearance






	Return type

	None










	
lumin.plotting.interpretation.plot_2d_partial_dependence(model, df, feats, train_feats, ignore_feats=None, input_pipe=None, sample_sz=None, wgt_name=None, n_points=[20, 20], pdp_interact_kargs=None, pdp_interact_plot_kargs=None, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Wrapper for PDPbox to plot 2D dependence of specified pair of features using provided NN or RF.
If features have been preprocessed using an SK-Learn Pipeline, then that can be passed in order to rescale them back to their original values.


	Parameters

	
	model (Any) – any trained model with a .predict method


	df (DataFrame) – DataFrame containing training data


	feats (Tuple[str, str]) – pair of features for which to evaluate the partial dependence of the model


	train_feats (List[str]) – list of all training features including ones which were later ignored, i.e. input features considered when input_pipe was fitted


	ignore_feats (Optional[List[str]]) – features present in training data which were not used to train the model (necessary to correctly deprocess feature using input_pipe)


	input_pipe (Optional[Pipeline]) – SK-Learn Pipeline which was used to process the training data


	sample_sz (Optional[int]) – if set, will only compute partial dependence on a random sample with replacement of the training data, sampled according to weights (if set).
Speeds up computation and allows weighted partial dependencies to computed.


	wgt_name (Optional[str]) – Optional column name to use as sampling weights


	n_points (Tuple[int, int]) – pair of numbers of points at which to evaluate the model output, passed to pdp_interact as num_grid_points


	n_clusters – number of clusters in which to group dependency lines. Set to None to show all lines


	pdp_isolate_kargs – optional dictionary of keyword arguments to pass to pdp_isolate


	pdp_plot_kargs – optional dictionary of keyword arguments to pass to pdp_plot


	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances


	settings (PlotSettings) – PlotSettings class to control figure appearance






	Return type

	None










	
lumin.plotting.interpretation.plot_multibody_weighted_outputs(model, inputs, block_names=None, use_mean=False, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Interpret how a model relies on the outputs of each block in a :class:MultiBlock by plotting the outputs of each block as weighted by the tail block.
This function currently only supports models whose tail block contains a single neuron in the first dense layer.
Input data is passed through the model and the absolute sums of the weighted block outputs are computed per datum, and optionally averaged over the number
of block outputs.


	Parameters

	
	model (AbsModel) – model to interpret


	inputs (Union[ndarray, Tensor]) – input data to use for interpretation


	block_names (Optional[List[str]]) – names for each block to use when plotting


	use_mean (bool) – if True, will average the weighted outputs over the number of output neurons in each block


	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances


	settings (PlotSettings) – PlotSettings class to control figure appearance






	Return type

	None










	
lumin.plotting.interpretation.plot_bottleneck_weighted_inputs(model, bottleneck_idx, inputs, log_y=True, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Interpret how a single-neuron bottleneck in a :class:MultiBlock relies on input features by plotting the absolute values of the features times their
associated weight for a given set of input data.


	Parameters

	
	model (AbsModel) – model to interpret


	bottleneck_idx (int) – index of the bottleneck to interpret, i.e. model.body.bottleneck_blocks[bottleneck_idx]


	inputs (Union[ndarray, Tensor]) – input data to use for interpretation


	log_y (bool) – whether to plot a log scale for the y-axis


	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances


	settings (PlotSettings) – PlotSettings class to control figure appearance






	Return type

	None












lumin.plotting.plot_settings module


	
class lumin.plotting.plot_settings.PlotSettings(**kargs)

	Bases: object

Class to provide control over plot appearances. Default parameters are set automatically, and can be adjusted by passing values as keyword arguments during
initialisation (or changed after instantiation)


	Parameters

	arguments (keyword) – used to set relevant plotting parameters






	
str2sz(sz, ax)

	Used to map requested plot sizes to actual dimensions


	Parameters

	
	sz (str) – string representation of size


	ax (str) – axis dimension requested






	Return type

	float



	Returns

	width of plot dimension
















lumin.plotting.results module


	
lumin.plotting.results.plot_roc(data, pred_name='pred', targ_name='gen_target', wgt_name=None, labels=None, plot_params=None, n_bootstrap=0, log_x=False, plot_baseline=True, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Plot receiver operating characteristic curve(s), optionally using booststrap resampling


	Parameters

	
	data (Union[DataFrame, List[DataFrame]]) – (list of) DataFrame(s) from which to draw predictions and targets


	pred_name (str) – name of column to use as predictions


	targ_name (str) – name of column to use as targets


	wgt_name (Optional[str]) – optional name of column to use as sample weights


	labels (Union[str, List[str], None]) – (list of) label(s) for plot legend


	plot_params (Union[Dict[str, Any], List[Dict[str, Any]], None]) – (list of) dictionar[y/ies] of argument(s) to pass to line plot


	n_bootstrap (int) – if greater than 0, will bootstrap resample the data that many times when computing the ROC AUC. Currently, this does not affect the shape
of the lines, which are based on computing the ROC for the entire dataset as is.


	log_x (bool) – whether to use a log scale for plotting the x-axis, useful for high AUC line


	plot_baseline (bool) – whether to plot a dotted line for AUC=0.5. Currently incompatable with log_x=True


	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances


	settings (PlotSettings) – PlotSettings class to control figure appearance






	Return type

	Dict[str, Union[float, Tuple[float, float]]]



	Returns

	Dictionary mapping data labels to aucs (and uncertainties if n_bootstrap > 0)










	
lumin.plotting.results.plot_binary_class_pred(df, pred_name='pred', targ_name='gen_target', wgt_name=None, wgt_scale=1, log_y=False, lim_x=(0, 1), density=True, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Basic plotter for prediction distribution in a binary classification problem.
Note that labels are set using the settings.targ2class dictionary, which by default is {0: ‘Background’, 1: ‘Signal’}.


	Parameters

	
	df (DataFrame) – DataFrame with targets and predictions


	pred_name (str) – name of column to use as predictions


	targ_name (str) – name of column to use as targets


	wgt_name (Optional[str]) – optional name of column to use as sample weights


	wgt_scale (float) – applies a global multiplicative rescaling to sample weights. Default 1 = no rescaling


	log_y (bool) – whether to use a log scale for the y-axis


	lim_x (Tuple[float, float]) – limit for plotting on the x-axis


	density – whether to normalise each distribution to one, or keep set to sum of weights / datapoints


	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances


	settings (PlotSettings) – PlotSettings class to control figure appearance






	Return type

	None










	
lumin.plotting.results.plot_sample_pred(df, pred_name='pred', targ_name='gen_target', wgt_name='gen_weight', sample_name='gen_sample', wgt_scale=1, bins=35, log_y=True, lim_x=(0, 1), density=False, zoom_args=None, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	More advanced plotter for prediction distribution in a binary class problem with stacked distributions for backgrounds and user-defined binning
Can also zoom in to specified parts of plot
Note that plotting colours can be controled by seeting the settings.sample2col dictionary


	Parameters

	
	df (DataFrame) – DataFrame with targets and predictions


	pred_name (str) – name of column to use as predictions


	targ_name (str) – name of column to use as targets


	wgt_name (str) – name of column to use as sample weights


	sample_name (str) – name of column to use as process names


	wgt_scale (float) – applies a global multiplicative rescaling to sample weights. Default 1 = no rescaling


	bins (Union[int, List[int]]) – either the number of bins to use for a uniform binning, or a list of bin edges for a variable-width binning


	log_y (bool) – whether to use a log scale for the y-axis


	lim_x (Tuple[float, float]) – limit for plotting on the x-axis


	density – whether to normalise each distribution to one, or keep set to sum of weights / datapoints


	zoom_args (Optional[Dict[str, Any]]) – arguments to control the optional zoomed in section,
e.g. {‘x’:(0.4,0.45), ‘y’:(0.2, 1500), ‘anchor’:(0,0.25,0.95,1), ‘width_scale’:1, ‘width_zoom’:4, ‘height_zoom’:3}


	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances


	settings (PlotSettings) – PlotSettings class to control figure appearance






	Return type

	None












lumin.plotting.training module


	
lumin.plotting.training.plot_train_history(histories, savename=None, ignore_trn=True, settings=<lumin.plotting.plot_settings.PlotSettings object>, show=True, xlow=0, log_y=False)

	Plot histories object returned by fold_train_ensemble() showing the loss evolution over time per model trained.


	Parameters

	
	histories (List[Dict[str, List[float]]]) – list of dictionaries mapping loss type to values at each (sub)-epoch


	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances


	ignore_trn (bool) – whether to ignore training loss


	settings (PlotSettings) – PlotSettings class to control figure appearance


	show (bool) – whether or not to show the plot, or just save it






	Return type

	None










	
lumin.plotting.training.plot_lr_finders(lr_finders, lr_range=None, loss_range='auto', log_y='auto', savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Plot mean loss evolution against learning rate for several fold_lr_find.


	Parameters

	
	lr_finders (List[LRFinder]) – list of fold_lr_find)


	lr_range (Union[float, Tuple, None]) – limits the range of learning rates plotted on the x-axis: if float, maximum LR; if tuple, minimum & maximum LR


	loss_range (Union[float, Tuple, str, None]) – limits the range of losses plotted on the x-axis:
if float, maximum loss;
if tuple, minimum & maximum loss;
if None, no limits;
if ‘auto’, computes an upper limit automatically


	log_y (Union[str, bool]) – whether to plot y-axis as log. If ‘auto’, will set to log if maximal fractional difference in loss values is greater than 50


	savename (Optional[str]) – Optional name of file to which to save the plot


	settings (PlotSettings) – PlotSettings class to control figure appearance






	Return type

	None
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lumin.utils package


Submodules




lumin.utils.data module


	
lumin.utils.data.check_val_set(train, val, test=None, n_folds=None)

	Method to check validation set suitability by seeing whether Random Forests can predict whether events belong to one dataset or another.
If a FoldYielder is passed, then trainings are run once per fold and averaged.
Will compute the ROC AUC for set discrimination (should be close to 0.5) and compute the feature importances to aid removal of discriminating features.


	Parameters

	
	train (Union[DataFrame, ndarray, FoldYielder]) – training data


	val (Union[DataFrame, ndarray, FoldYielder]) – validation data


	test (Union[DataFrame, ndarray, FoldYielder, None]) – optional testing data


	n_folds (Optional[int]) – if set and if passed a FoldYielder, will only use the first n_folds folds






	Return type

	None












lumin.utils.misc module


	
lumin.utils.misc.to_np(x)

	Convert Tensor x to a Numpy array


	Parameters

	x (Tensor) – Tensor to convert



	Return type

	ndarray



	Returns

	x as a Numpy array










	
lumin.utils.misc.to_device(x, device=device(type='cpu'))

	Recursively place Tensor(s) onto device


	Parameters

	x (Union[Tensor, List[Tensor]]) – Tensor(s) to place on device



	Return type

	Union[Tensor, List[Tensor]]



	Returns

	Tensor(s) on device










	
lumin.utils.misc.to_tensor(x)

	Convert Numpy array to Tensor with possibility of a None being passed


	Parameters

	x (Optional[ndarray]) – Numpy array or None



	Return type

	Optional[Tensor]



	Returns

	x as Tensor or None










	
lumin.utils.misc.str2bool(string)

	Convert string representation of Boolean to bool


	Parameters

	string (Union[str, bool]) – string representation of Boolean (or a Boolean)



	Return type

	bool



	Returns

	bool if bool was passed else, True if lowercase string matches is in (“yes”, “true”, “t”, “1”)










	
lumin.utils.misc.to_binary_class(df, zero_preds, one_preds)

	Map class precitions back to a binary prediction.
The maximum prediction for features listed in zero_preds is treated as the prediction for class 0, vice versa for one_preds.
The binary prediction is added to df in place as column ‘pred’


	Parameters

	
	df (DataFrame) – DataFrame containing prediction features


	zero_preds (List[str]) – list of column names for predictions associated with class 0


	one_preds (List[str]) – list of column names for predictions associated with class 0






	Return type

	None










	
lumin.utils.misc.ids2unique(ids)

	Map a permutaion of integers to a unique number, or a 2D array of integers to unique numbers by row.
Returned numbers are unique for a given permutation of integers.
This is achieved by computing the product of primes raised to powers equal to the integers. Beacause of this, it can be easy to produce numbers which are
too large to be stored if many (large) integers are passed.


	Parameters

	ids (Union[List[int], ndarray]) – (array of) permutation(s) of integers to map



	Return type

	ndarray



	Returns

	(Array of) unique id(s) for given permutation(s)










	
class lumin.utils.misc.FowardHook(module, hook_fn=None)

	Bases: object

Create a hook for performing an action based on the forward pass thorugh a nn.Module


	Parameters

	
	module – nn.Module to hook


	hook_fn – Optional function to perform. Default is to record input and output of module









	Examples::
	>>> hook = ForwardHook(model.tail.dense)
>>> model.predict(inputs)
>>> print(hook.inputs)










	
hook_fn(module, input, output)

	Default hook function records inputs and outputs of module


	Parameters

	
	module (Module) – nn.Module to hook


	input (Union[Tensor, Tuple[Tensor]]) – input tensor


	output (Union[Tensor, Tuple[Tensor]]) – output tensor of module






	Return type

	None










	
remove()

	Call when finished to remove hook


	Return type

	None














	
lumin.utils.misc.subsample_df(df, objective, targ_name, n_samples=None, replace=False, strat_key=None, wgt_name=None)

	Subsamples, or samples with replacement, a DataFrame.
Will automatically reweight data such that weight sums remain the same as the original DataFrame (per class)


	Parameters

	
	df (DataFrame) – DataFrame to sample


	objective (str) – string representation of objective: either ‘classification’ or ‘regression’


	targ_name (str) – name of column containing target data


	n_samples (Optional[int]) – If set, will sample that number of data points, otherwise will sample with replacement a new DataFRame of the same size as the original


	replace (bool) – whether to sample with replacement


	strat_key (Optional[str]) – column name to use for stratified subsampling, if desired


	wgt_name (Optional[str]) – name of column containing weight data. If set, will reweight subsampled data, otherwise will not






	Return type

	DataFrame












lumin.utils.multiprocessing module


	
lumin.utils.multiprocessing.mp_run(args, func)

	Run multiple instances of function simultaneously by using a list of argument dictionaries
Runs given function once per entry in args list.


Important

Function should put a dictionary of results into the mp.Queue and each result key should be unique otherwise they will overwrite one another.




	Parameters

	
	args (List[Dict[Any, Any]]) – list of dictionaries of arguments


	func (Callable[[Any], Any]) – function to which to pass dictionary arguments






	Return type

	Dict[Any, Any]



	Returns

	DIctionary of results












lumin.utils.statistics module


	
lumin.utils.statistics.bootstrap_stats(args, out_q=None)

	Computes statistics and KDEs of data via sampling with replacement


	Parameters

	
	args (Dict[str, Any]) – dictionary of arguments. Possible keys are:
data - data to resample
name - name prepended to returned keys in result dict
weights - array of weights matching length of data to use for weighted resampling
n - number of times to resample data
x - points at which to compute the kde values of resample data
kde - whether to compute the kde values at x-points for resampled data
mean - whether to compute the means of the resampled data
std - whether to compute standard deviation of resampled data
c68 - whether to compute the width of the absolute central 68.2 percentile of the resampled data


	out_q (Optional[<bound method BaseContext.Queue of <multiprocessing.context.DefaultContext object at 0x7ffb33b18a20>>]) – if using multiporcessing can place result dictionary in provided queue






	Return type

	Union[None, Dict[str, Any]]



	Returns

	Result dictionary if out_q is None else None.










	
lumin.utils.statistics.get_moments(arr)

	Computes mean and std of data, and their associated uncertainties


	Parameters

	arr (ndarray) – univariate data



	Return type

	Tuple[float, float, float, float]



	Returns

	
	mean


	statistical uncertainty of mean


	standard deviation


	statistical uncertainty of standard deviation















	
lumin.utils.statistics.uncert_round(value, uncert)

	Round value according to given uncertainty using one significant figure of the uncertainty


	Parameters

	
	value (float) – value to round


	uncert (float) – uncertainty of value






	Return type

	Tuple[float, float]



	Returns

	
	rounded value


	rounded uncertainty
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Distinguishing Characteristics


Data objects


	Use with large datasets: HEP data can become quite large, making training difficult:


	The FoldYielder class provides on-demand access to data stored in HDF5 format, only loading into memory what is required.


	Conversion from ROOT and CSV to HDF5 is easy to achieve using (see examples)


	FoldYielder provides conversion methods to Pandas DataFrame for use with other internal methods and external packages






	Non-network-specific methods expect Pandas DataFrame allowing their use without having to convert to FoldYielder.







Deep learning


	PyTorch > 1.0


	Inclusion of recent deep learning techniques and practices, including:


	Dynamic learning rate, momentum, beta_1:


	Cyclical, Smith, 2015 [https://arxiv.org/abs/1506.01186]


	Cosine annealed Loschilov & Hutter, 2016 [https://arxiv.org/abs/1608.03983]


	1-cycle, Smith, 2018 [https://arxiv.org/abs/1803.09820]






	HEP-specific data augmentation during training and inference


	Advanced ensembling methods:


	Snapshot ensembles Huang et al., 2017 [https://arxiv.org/abs/1704.00109]


	Fast geometric ensembles Garipov et al., 2018 [https://arxiv.org/abs/1802.10026]


	Stochastic Weight Averaging Izmailov et al., 2018 [https://arxiv.org/abs/1803.05407]






	Learning Rate Finders, Smith, 2015 [https://arxiv.org/abs/1506.01186]


	Entity embedding of categorical features, Guo & Berkhahn, 2016 [https://arxiv.org/abs/1604.06737]


	Label smoothing Szegedy et al., 2015 [https://arxiv.org/abs/1512.00567]






	Flexible architecture construction:


	ModelBuilder takes parameters and modules to yield networks on-demand


	Networks constructed from modular blocks:


	Head - Takes input features


	Body - Contains most of the hidden layers


	Tail - Scales down the body to the desired number of outputs


	Endcap - Optional layer for use post-training to provide further computation on model outputs; useful when training on a proxy objective






	Easy loading and saving of pre-trained embedding weights


	Modern architectures like:


	Residual and dense(-like) networks (He et al. 2015 [https://arxiv.org/abs/1512.03385] & Huang et al. 2016 [https://arxiv.org/abs/1608.06993])


	Graph nets for physics objects, e.g. Battaglia, Pascanu, Lai, Rezende, Kavukcuoglu, 2016 [https://arxiv.org/abs/1612.00222] & Moreno et al., 2019 [https://arxiv.org/abs/1908.05318]


	Recurrent layers for series of objects


	1D convolutional networks for series of objects


	HEP-specific architectures, e.g. LorentzBoostNetworks Erdmann, Geiser, Rath, Rieger, 2018 [https://arxiv.org/abs/1812.09722]










	Configurable initialisations, including LSUV Mishkin, Matas, 2016 [https://arxiv.org/abs/1511.06422]


	HEP-specific losses, e.g. Asimov loss Elwood & Krücker, 2018 [https://arxiv.org/abs/1806.00322]


	Easy training and inference of ensembles of models:


	Default training method fold_train_ensemble, trains a specified number of models as well as just a single model


	Ensemble class handles the (metric-weighted) construction of an ensemble, its inference, saving and loading, and interpretation






	Easy exporting of models to other libraries via Onnx


	Use with CPU and NVidia GPU


	Evaluation on domain-specific metrics such as Approximate Median Significance via EvalMetric class


	Keras-style callbacks







Feature selection methods


	Dendrograms of feature-pair monotonacity


	Feature importance via auto-optimised SK-Learn random forests


	Mutual dependance (via RFPImp)


	Automatic filtering and selection of features







Interpretation


	Feature importance for models and ensembles


	Embedding visualisation


	1D & 2D partial dependency plots (via PDPbox)







Plotting


	Variety of domain-specific plotting functions


	Unified appearance via PlotSettings class - class accepted by every plot function providing control of plot appearance, titles, colour schemes, et cetera







Universal handling of sample weights


	HEP events are normally accompanied by weight characterising the acceptance and production cross-section of that particular event, or to flatten some distribution.


	Relevant methods and classes can take account of these weights.


	This includes training, interpretation, and plotting


	Expansion of PyTorch losses to better handle weights







Parameter optimisation


	Optimal learning rate via cross-validated range tests Smith, 2015 [https://arxiv.org/abs/1506.01186]


	Quick, rough optimisation of random forest hyper parameters


	Generalisable Cut & Count thresholds


	1D discriminant binning with respect to bin-fill uncertainty







Statistics and uncertainties


	Integral to experimental science


	Quantitative results are accompanied by uncertainties


	Use of bootstrapping to improve precision of statistics estimated from small samples







Look and feel


	LUMIN aims to feel fast to use - liberal use of progress bars mean you’re able to always know when tasks will finish, and get live updates of training


	Guaranteed to spark joy (in its current beta state, LUMIN may instead ignite rage, despair, and frustration - dev.)









Installation

Due to some strict version requirements on packages, it is recommended to install LUMIN in its own Python environment, e.g conda create -n lumin python=3.6


From PyPI

The main package can be installed via:
pip install lumin

Full functionality requires two additional packages as described below.




From source

git clone git@github.com:GilesStrong/lumin.git
cd lumin
pip install .





Optionally, run pip install with -e flag for development installation. Full functionality requires an additional package as described below.




Additional modules

Full use of LUMIN requires the latest version of PDPbox, but this is not released yet on PyPI, so you’ll need to install it from source, too:


	git clone https://github.com/SauceCat/PDPbox.git && cd PDPbox && pip install -e . note the -e flag to make sure the version number gets set properly.









Notes


Why use LUMIN

TMVA contained in CERN’s ROOT system, has been the default choice for BDT training for analysis and reconstruction algorithms due to never having to leave ROOT format. With the gradual move to DNN approaches, more scientists are looking to move their data out of ROOT to use the wider selection of tools which are available. Keras appears to be the first stop due to its ease of use, however implementing recent methods in Keras can be difficult, and sometimes requires dropping back to the tensor library that it aims to abstract. Indeed, the prequel to LUMIN was a similar wrapper for Keras (HEPML_Tools [https://github.com/GilesStrong/hepml_tools]) which involved some pretty ugly hacks.
The fastai framework provides access to these recent methods, however doesn’t yet support sample weights to the extent that HEP requires.
LUMIN aims to provide the best of both, Keras-style sample weighting and fastai training methods, while focussing on columnar data and providing domain-specific metrics, plotting, and statistical treatment of results and uncertainties.




Data types

LUMIN is primarily designed for use on columnar data, and from version 0.5 onwards this also includes matrix data; ordered series and un-ordered groups of objects. With some extra work it can be used on other data formats, but at the moment it has nothing special to offer. Whilst recent work in HEP has made use of jet images and GANs, these normally hijack existing ideas and models. Perhaps once we get established, domain specific approaches which necessitate the use of a specialised framework, then LUMIN could grow to meet those demands, but for now I’d recommend checking out the fastai library, especially for image data.

With just one main developer, I’m simply focussing on the data types and applications I need for my own research and common use cases in HEP. If, however you would like to use LUMIN’s other methods for your own work on other data formats, then you are most welcome to contribute and help to grow LUMIN to better meet the needs of the scientific community.




Future

The current priority is to imporve the documentation, add unit tests, and expand the examples.

The next step will be to try to increase the user base and number of contributors. I’m aiming to achieve this through presentations, tutorials, blog posts, and papers.

Further improvements will be in the direction of implementing new methods and (HEP-specific) architectures, as well as providing helper functions and data exporters to statistical analysis packages like Combine and PYHF.




Contributing & feedback

Contributions, suggestions, and feedback are most welcome! The issue tracker on this repo is probably the best place to report bugs et cetera.




Code style

Nope, the majority of the codebase does not conform to PEP8. PEP8 has its uses, but my understanding is that it primarily written for developers and maintainers of software whose users never need to read the source code. As a maths-heavy research framework which users are expected to interact with, PEP8 isn’t the best style. Instead, I’m aiming to follow more the style of fastai [https://docs.fast.ai/dev/style.html], which emphasises, in particular, reducing vertical space (useful for reading source code in a notebook) naming and abbreviating variables according to their importance and lifetime (easier to recognise which variables have a larger scope and permits easier writing of mathematical operations). A full list of the abbreviations used may be found in abbr.md [https://github.com/GilesStrong/lumin/blob/master/abbr.md]




Why is LUMIN called LUMIN?

Aside from being a recursive acronym (and therefore the best kind of acronym) lumin is short for ‘luminosity’. In high-energy physics, the integrated luminosity of the data collected by an experiment is the main driver in the results that analyses obtain. With the paradigm shift towards multivariate analyses, however, improved methods can be seen as providing ‘artificial luminosity’; e.g. the gain offered by some DNN could be measured in terms of the amount of extra data that would have to be collected to achieve the same result with a more traditional analysis. Luminosity can also be connected to the fact that LUMIN is built around the python version of Torch.




Who develops LUMIN

LUMIN is primarily developed by Giles Strong; a British-born PhD student in particle physics at IST (Portugal), and researcher at The University of Padova (Italy), and a member of the CMS collaboration at CERN.

As LUMIN has grown, it has welcomed contributions from members of the scientific and software development community. Check out the contributors page [https://github.com/GilesStrong/lumin/graphs/contributors] for a complete list.

Certainly more developers and contributors are welcome to join and help out!




Reference

If you have used LUMIN in your analysis work and wish to cite it, the preferred reference is: Giles C. Strong, LUMIN, Zenodo (Mar. 2019), https://doi.org/10.5281/zenodo.2601857, Note: Please check https://github.com/GilesStrong/lumin/graphs/contributors for the full list of contributors

@misc{giles_chatham_strong_2019_2601857,
  author       = {Giles Chatham Strong},
  title        = {LUMIN},
  month        = mar,
  year         = 2019,
  note         = {{Please check https://github.com/GilesStrong/lumin/graphs/contributors for the full list of contributors}},
  doi          = {10.5281/zenodo.2601857},
  url          = {https://doi.org/10.5281/zenodo.2601857}
}
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