

LUMIN

Lumin Unifies Many Improvements for Networks

LUMIN aims to become a deep-learning and data-analysis ecosystem for
High-Energy Physics, and perhaps other scientific domains in the future.
Similar to Keras [https://keras.io/] and fastai [https://github.com/fastai/fastai] it is a wrapper framework for a graph
computation library (PyTorch), but includes many useful functions to
handle domain-specific requirements and problems. It also intends to
provide easy access to to state-of-the-art methods, but still be
flexible enough for users to inherit from base classes and override
methods to meet their own demands.

Package Reference

	lumin.data_processing package

	lumin.evaluation package

	lumin.inference package

	lumin.nn package

	lumin.optimisation package

	lumin.plotting package

	lumin.utils package

Package Description

Distinguishing Characteristics

Data objects

	Use with large datasets: HEP data can become quite large, making training difficult:

	The FoldYielder class provides on-demand access to data stored in HDF5 format, only loading into memory what is required.

	Conversion from ROOT and CSV to HDF5 is easy to achieve using (see examples)

	FoldYielder provides conversion methods to Pandas DataFrame for use with other internal methods and external packages

	Non-network-specific methods expect Pandas DataFrame allowing their use without having to convert to FoldYielder.

Deep learning

	PyTorch > 1.0

	Inclusion of recent deep learning techniques and practices, including:

	Dynamic learning rate, momentum, beta_1:

	Cyclical, Smith, 2015 [https://arxiv.org/abs/1506.01186]

	Cosine annealed Loschilov & Hutter, 2016 [https://arxiv.org/abs/1608.03983]

	1-cycle, Smith, 2018 [https://arxiv.org/abs/1803.09820]

	HEP-specific data augmentation during training and inference

	Advanced ensembling methods:

	Snapshot ensembles Huang et al., 2017 [https://arxiv.org/abs/1704.00109]

	Fast geometric ensembles Garipov et al., 2018 [https://arxiv.org/abs/1802.10026]

	Stochastic Weight Averaging Izmailov et al., 2018 [https://arxiv.org/abs/1803.05407]

	Learning Rate Finders, Smith, 2015 [https://arxiv.org/abs/1506.01186]

	Entity embedding of categorical features, Guo & Berkhahn, 2016 [https://arxiv.org/abs/1604.06737]

	Label smoothing Szegedy et al., 2015 [https://arxiv.org/abs/1512.00567]

	Flexible architecture construction:

	ModelBuilder takes parameters and modules to yield networks on-demand

	Networks constructed from modular blocks:

	Head - Takes input features

	Body - Contains most of the hidden layers

	Tail - Scales down the body to the desired number of outputs

	Endcap - Optional layer for use post-training to provide further computation on model outputs; useful when training on a proxy objective

	Easy loading and saving of pre-trained embedding weights

	Modern architectures like:

	Residual and dense(-like) networks (He et al. 2015 [https://arxiv.org/abs/1512.03385] & Huang et al. 2016 [https://arxiv.org/abs/1608.06993])

	Graph nets for physics objects, e.g. Battaglia, Pascanu, Lai, Rezende, Kavukcuoglu, 2016 [https://arxiv.org/abs/1612.00222] & Moreno et al., 2019 [https://arxiv.org/abs/1908.05318]

	Recurrent layers for series of objects

	1D convolutional networks for series of objects

	HEP-specific architectures, e.g. LorentzBoostNetworks Erdmann, Geiser, Rath, Rieger, 2018 [https://arxiv.org/abs/1812.09722]

	Configurable initialisations, including LSUV Mishkin, Matas, 2016 [https://arxiv.org/abs/1511.06422]

	HEP-specific losses, e.g. Asimov loss Elwood & Krücker, 2018 [https://arxiv.org/abs/1806.00322]

	Easy training and inference of ensembles of models:

	Default training method fold_train_ensemble, trains a specified number of models as well as just a single model

	Ensemble class handles the (metric-weighted) construction of an ensemble, its inference, saving and loading, and interpretation

	Easy exporting of models to other libraries via Onnx

	Use with CPU and NVidia GPU

	Evaluation on domain-specific metrics such as Approximate Median Significance via EvalMetric class

	Keras-style callbacks

Feature selection methods

	Dendrograms of feature-pair monotonacity

	Feature importance via auto-optimised SK-Learn random forests

	Mutual dependance (via RFPImp)

	Automatic filtering and selection of features

Interpretation

	Feature importance for models and ensembles

	Embedding visualisation

	1D & 2D partial dependency plots (via PDPbox)

Plotting

	Variety of domain-specific plotting functions

	Unified appearance via PlotSettings class - class accepted by every plot function providing control of plot appearance, titles, colour schemes, et cetera

Universal handling of sample weights

	HEP events are normally accompanied by weight characterising the acceptance and production cross-section of that particular event, or to flatten some distribution.

	Relevant methods and classes can take account of these weights.

	This includes training, interpretation, and plotting

	Expansion of PyTorch losses to better handle weights

Parameter optimisation

	Optimal learning rate via cross-validated range tests Smith, 2015 [https://arxiv.org/abs/1506.01186]

	Quick, rough optimisation of random forest hyper parameters

	Generalisable Cut & Count thresholds

	1D discriminant binning with respect to bin-fill uncertainty

Statistics and uncertainties

	Integral to experimental science

	Quantitative results are accompanied by uncertainties

	Use of bootstrapping to improve precision of statistics estimated from small samples

Look and feel

	LUMIN aims to feel fast to use - liberal use of progress bars mean you’re able to always know when tasks will finish, and get live updates of training

	Guaranteed to spark joy (in its current beta state, LUMIN may instead ignite rage, despair, and frustration - dev.)

Installation

Due to some strict version requirements on packages, it is recommended to install LUMIN in its own Python environment, e.g conda create -n lumin python=3.6

From PyPI

The main package can be installed via:
pip install lumin

Full functionality requires two additional packages as described below.

From source

git clone git@github.com:GilesStrong/lumin.git
cd lumin
pip install .

Optionally, run pip install with -e flag for development installation. Full functionality requires an additional package as described below.

Additional modules

Full use of LUMIN requires the latest version of PDPbox, but this is not released yet on PyPI, so you’ll need to install it from source, too:

	git clone https://github.com/SauceCat/PDPbox.git && cd PDPbox && pip install -e . note the -e flag to make sure the version number gets set properly.

Notes

Why use LUMIN

TMVA contained in CERN’s ROOT system, has been the default choice for BDT training for analysis and reconstruction algorithms due to never having to leave ROOT format. With the gradual move to DNN approaches, more scientists are looking to move their data out of ROOT to use the wider selection of tools which are available. Keras appears to be the first stop due to its ease of use, however implementing recent methods in Keras can be difficult, and sometimes requires dropping back to the tensor library that it aims to abstract. Indeed, the prequel to LUMIN was a similar wrapper for Keras (HEPML_Tools [https://github.com/GilesStrong/hepml_tools]) which involved some pretty ugly hacks.
The fastai framework provides access to these recent methods, however doesn’t yet support sample weights to the extent that HEP requires.
LUMIN aims to provide the best of both, Keras-style sample weighting and fastai training methods, while focussing on columnar data and providing domain-specific metrics, plotting, and statistical treatment of results and uncertainties.

Data types

LUMIN is primarily designed for use on columnar data, and from version 0.5 onwards this also includes matrix data; ordered series and un-ordered groups of objects. With some extra work it can be used on other data formats, but at the moment it has nothing special to offer. Whilst recent work in HEP has made use of jet images and GANs, these normally hijack existing ideas and models. Perhaps once we get established, domain specific approaches which necessitate the use of a specialised framework, then LUMIN could grow to meet those demands, but for now I’d recommend checking out the fastai library, especially for image data.

With just one main developer, I’m simply focussing on the data types and applications I need for my own research and common use cases in HEP. If, however you would like to use LUMIN’s other methods for your own work on other data formats, then you are most welcome to contribute and help to grow LUMIN to better meet the needs of the scientific community.

Future

The current priority is to imporve the documentation, add unit tests, and expand the examples.

The next step will be to try to increase the user base and number of contributors. I’m aiming to achieve this through presentations, tutorials, blog posts, and papers.

Further improvements will be in the direction of implementing new methods and (HEP-specific) architectures, as well as providing helper functions and data exporters to statistical analysis packages like Combine and PYHF.

Contributing & feedback

Contributions, suggestions, and feedback are most welcome! The issue tracker on this repo is probably the best place to report bugs et cetera.

Code style

Nope, the majority of the codebase does not conform to PEP8. PEP8 has its uses, but my understanding is that it primarily written for developers and maintainers of software whose users never need to read the source code. As a maths-heavy research framework which users are expected to interact with, PEP8 isn’t the best style. Instead, I’m aiming to follow more the style of fastai [https://docs.fast.ai/dev/style.html], which emphasises, in particular, reducing vertical space (useful for reading source code in a notebook) naming and abbreviating variables according to their importance and lifetime (easier to recognise which variables have a larger scope and permits easier writing of mathematical operations). A full list of the abbreviations used may be found in abbr.md [https://github.com/GilesStrong/lumin/blob/master/abbr.md]

Why is LUMIN called LUMIN?

Aside from being a recursive acronym (and therefore the best kind of acronym) lumin is short for ‘luminosity’. In high-energy physics, the integrated luminosity of the data collected by an experiment is the main driver in the results that analyses obtain. With the paradigm shift towards multivariate analyses, however, improved methods can be seen as providing ‘artificial luminosity’; e.g. the gain offered by some DNN could be measured in terms of the amount of extra data that would have to be collected to achieve the same result with a more traditional analysis. Luminosity can also be connected to the fact that LUMIN is built around the python version of Torch.

Who develops LUMIN

LUMIN is primarily developed by Giles Strong; a British-born PhD student in particle physics at IST (Portugal), and researcher at The University of Padova (Italy), and a member of the CMS collaboration at CERN.

As LUMIN has grown, it has welcomed contributions from members of the scientific and software development community. Check out the contributors page [https://github.com/GilesStrong/lumin/graphs/contributors] for a complete list.

Certainly more developers and contributors are welcome to join and help out!

Reference

If you have used LUMIN in your analysis work and wish to cite it, the preferred reference is: Giles C. Strong, LUMIN, Zenodo (Mar. 2019), https://doi.org/10.5281/zenodo.2601857, Note: Please check https://github.com/GilesStrong/lumin/graphs/contributors for the full list of contributors

@misc{giles_chatham_strong_2019_2601857,
 author = {Giles Chatham Strong},
 title = {LUMIN},
 month = mar,
 year = 2019,
 note = {{Please check https://github.com/GilesStrong/lumin/graphs/contributors for the full list of contributors}},
 doi = {10.5281/zenodo.2601857},
 url = {https://doi.org/10.5281/zenodo.2601857}
}

Index

	Index

lumin.data_processing package

Submodules

lumin.data_processing.file_proc module

	
lumin.data_processing.file_proc.save_to_grp(arr, grp, name, compression=None)

	Save Numpy array as a dataset in an h5py Group

	Parameters

	
	arr (ndarray) – array to be saved

	grp (Group) – group in which to save arr

	name (str) – name of dataset to create

	compression (Optional[str]) – optional compression argument for h5py, e.g. ‘lzf’

	Return type

	None

	
lumin.data_processing.file_proc.fold2foldfile(df, out_file, fold_idx, cont_feats, cat_feats, targ_feats, targ_type, misc_feats=None, wgt_feat=None, matrix_lookup=None, matrix_missing=None, matrix_shape=None, tensor_data=None, compression=None)

	Save fold of data into an h5py Group

	Parameters

	
	df (DataFrame) – Dataframe from which to save data

	out_file (File) – h5py file to save data in

	fold_idx (int) – ID for the fold; used name h5py group according to ‘fold_{fold_idx}’

	cont_feats (List[str]) – list of columns in df to save as continuous variables

	cat_feats (List[str]) – list of columns in df to save as discreet variables

	targ_feats (Union[str, List[str]]) – (list of) column(s) in df to save as target feature(s)

	targ_type (Any) – type of target feature, e.g. int,’float32’

	misc_feats (Optional[List[str]]) – any extra columns to save

	wgt_feat (Optional[str]) – column to save as data weights

	matrix_vecs – list of objects for matrix encoding, i.e. feature prefixes

	matrix_feats_per_vec – list of features per vector for matrix encoding, i.e. feature suffixes.
Features listed but not present in df will be replaced with NaN.

	matrix_row_wise – whether objects encoded as a matrix should be encoded row-wise (i.e. all the features associated with an object are in their own row),
or column-wise (i.e. all the features associated with an object are in their own column)

	tensor_data (Optional[ndarray]) – data of higher order than a matrix can be passed directly as a numpy array, rather than beign extracted and reshaped from the DataFrame.
The array will be saved under matrix data, and this is incompatible with also setting matrix_lookup, matrix_missing, and matrix_shape.
The first dimension of the array must be compatible with the length of the data frame.

	compression (Optional[str]) – optional compression argument for h5py, e.g. ‘lzf’

	Return type

	None

	
lumin.data_processing.file_proc.df2foldfile(df, n_folds, cont_feats, cat_feats, targ_feats, savename, targ_type, strat_key=None, misc_feats=None, wgt_feat=None, cat_maps=None, matrix_vecs=None, matrix_feats_per_vec=None, matrix_row_wise=None, tensor_data=None, tensor_name=None, tensor_is_sparse=False, compression=None)

	Convert dataframe into h5py file by splitting data into sub-folds to be accessed by a FoldYielder

	Parameters

	
	df (DataFrame) – Dataframe from which to save data

	n_folds (int) – number of folds to split df into

	cont_feats (List[str]) – list of columns in df to save as continuous variables

	cat_feats (List[str]) – list of columns in df to save as discreet variables

	targ_feats (Union[str, List[str]]) – (list of) column(s) in df to save as target feature(s)

	savename (Union[Path, str]) – name of h5py file to create (.h5py extension not required)

	targ_type (str) – type of target feature, e.g. int,’float32’

	strat_key (Optional[str]) – column to use for stratified splitting

	misc_feats (Optional[List[str]]) – any extra columns to save

	wgt_feat (Optional[str]) – column to save as data weights

	cat_maps (Optional[Dict[str, Dict[int, Any]]]) – Dictionary mapping categorical features to dictionary mapping codes to categories

	matrix_vecs (Optional[List[str]]) – list of objects for matrix encoding, i.e. feature prefixes

	matrix_feats_per_vec (Optional[List[str]]) – list of features per vector for matrix encoding, i.e. feature suffixes.
Features listed but not present in df will be replaced with NaN.

	matrix_row_wise (Optional[bool]) – whether objects encoded as a matrix should be encoded row-wise (i.e. all the features associated with an object are in their own row),
or column-wise (i.e. all the features associated with an object are in their own column)

	tensor_data (Optional[ndarray]) – data of higher order than a matrix can be passed directly as a numpy array, rather than beign extracted and reshaped from the DataFrame.
The array will be saved under matrix data, and this is incompatible with also setting matrix_vecs, matrix_feats_per_vec, and matrix_row_wise.
The first dimension of the array must be compatible with the length of the data frame.

	tensor_name (Optional[str]) – if tensor_data is set, then this is the name that will to the foldfile’s metadata.

	tensor_is_sparse (bool) – Set to True if the matrix is in sparse COO format and should be densified later on
The format expected is coo_x = sparse.as_coo(x); m = np.vstack((coo_x.data, coo_x.coords)), where m is the tensor passed to tensor_data.

	compression (Optional[str]) – optional compression argument for h5py, e.g. ‘lzf’

	Return type

	None

	
lumin.data_processing.file_proc.add_meta_data(out_file, feats, cont_feats, cat_feats, cat_maps, targ_feats, wgt_feat=None, matrix_vecs=None, matrix_feats_per_vec=None, matrix_row_wise=None, tensor_name=None, tensor_shp=None, tensor_is_sparse=False)

	Adds meta data to foldfile containing information about the data: feature names, matrix information, etc.
FoldYielder objects will access this and automatically extract it to save the user from having to manually pass lists
of features.

	Parameters

	
	out_file (File) – h5py file to save data in

	feats (List[str]) – list of all features in data

	cont_feats (List[str]) – list of continuous features

	cat_feats (List[str]) – list of categorical features

	cat_maps (Optional[Dict[str, Dict[int, Any]]]) – Dictionary mapping categorical features to dictionary mapping codes to categories

	targ_feats (Union[str, List[str]]) – (list of) target feature(s)

	wgt_feat (Optional[str]) – name of weight feature

	matrix_vecs (Optional[List[str]]) – list of objects for matrix encoding, i.e. feature prefixes

	matrix_feats_per_vec (Optional[List[str]]) – list of features per vector for matrix encoding, i.e. feature suffixes.
Features listed but not present in df will be replaced with NaN.

	matrix_row_wise (Optional[bool]) – whether objects encoded as a matrix should be encoded row-wise (i.e. all the features associated with an object are in their own row),
or column-wise (i.e. all the features associated with an object are in their own column)

	tensor_name (Optional[str]) – Name used to refer to the tensor when displaying model information

	tensor_shp (Optional[Tuple[int]]) – The shape of the tensor data (exclusing batch dimension)

	tensor_is_sparse (bool) – Whether the tensor is sparse (COO format) and should be densified prior to use

	Return type

	None

lumin.data_processing.hep_proc module

	
lumin.data_processing.hep_proc.to_cartesian(df, vec, drop=False)

	Vectoriesed conversion of 3-momenta to Cartesian coordinates inplace, optionally dropping old pT,eta,phi features

	Parameters

	
	df (DataFrame) – DataFrame to alter

	vec (str) – column prefix of vector components to alter, e.g. ‘muon’ for columns [‘muon_pt’, ‘muon_phi’, ‘muon_eta’]

	drop (bool) – Whether to remove original columns and just keep the new ones

	Return type

	None

	
lumin.data_processing.hep_proc.to_pt_eta_phi(df, vec, drop=False)

	Vectorised conversion of 3-momenta to pT,eta,phi coordinates inplace, optionally dropping old px,py,pz features

	Parameters

	
	df (DataFrame) – DataFrame to alter

	vec (str) – column prefix of vector components to alter, e.g. ‘muon’ for columns [‘muon_px’, ‘muon_py’, ‘muon_pz’]

	drop (bool) – Whether to remove original columns and just keep the new ones

	Return type

	None

	
lumin.data_processing.hep_proc.delta_phi(arr_a, arr_b)

	Vectorised computation of modulo 2pi angular seperation of array of angles b from array of angles a, in range [-pi,pi]

	Parameters

	
	arr_a (Union[float, ndarray]) – reference angles

	arr_b (Union[float, ndarray]) – final angles

	Return type

	Union[float, ndarray]

	Returns

	angular separation as float or np.ndarray

	
lumin.data_processing.hep_proc.twist(dphi, deta)

	Vectorised computation of twist between vectors (https://arxiv.org/abs/1010.3698)

	Parameters

	
	dphi (Union[float, ndarray]) – delta phi separations

	deta (Union[float, ndarray]) – delta eta separations

	Return type

	Union[float, ndarray]

	Returns

	angular separation as float or np.ndarray

	
lumin.data_processing.hep_proc.add_abs_mom(df, vec, z=True)

	Vectorised computation 3-momenta magnitude, adding new column in place. Currently only works for Cartesian vectors

	Parameters

	
	df (DataFrame) – DataFrame to alter

	vec (str) – column prefix of vector components, e.g. ‘muon’ for columns [‘muon_px’, ‘muon_py’, ‘muon_pz’]

	z (bool) – whether to consider the z-component of the momenta

	Return type

	None

	
lumin.data_processing.hep_proc.add_mass(df, vec)

	Vectorised computation of mass of 4-vector, adding new column in place.

	Parameters

	
	df (DataFrame) – DataFrame to alter

	vec (str) – column prefix of vector components, e.g. ‘muon’ for columns [‘muon_px’, ‘muon_py’, ‘muon_pz’]

	Return type

	None

	
lumin.data_processing.hep_proc.add_energy(df, vec)

	Vectorised computation of energy of 4-vector, adding new column in place.

	Parameters

	
	df (DataFrame) – DataFrame to alter

	vec (str) – column prefix of vector components, e.g. ‘muon’ for columns [‘muon_px’, ‘muon_py’, ‘muon_pz’]

	Return type

	None

	
lumin.data_processing.hep_proc.add_mt(df, vec, mpt_name='mpt')

	Vectorised computation of transverse mass of 4-vector with respect to missing transverse momenta, adding new column in place.
Currently only works for pT, eta, phi vectors

	Parameters

	
	df (DataFrame) – DataFrame to alter

	vec (str) – column prefix of vector components, e.g. ‘muon’ for columns [‘muon_px’, ‘muon_py’, ‘muon_pz’]

	mpt_name (str) – column prefix of vector of missing transverse momenta components, e.g. ‘mpt’ for columns [‘mpt_pT’, ‘mpt_phi’]

	
lumin.data_processing.hep_proc.get_vecs(feats, strict=True)

	Filter list of features to get list of 3-momenta defined in the list. Works for both pT, eta, phi and Cartesian coordinates.
If strict, return only vectors with all coordinates present in feature list.

	Parameters

	
	feats (List[str]) – list of features to filter

	strict (bool) – whether to require all 3-momenta components to be present in the list

	Return type

	Set[str]

	Returns

	set of unique 3-momneta prefixes

	
lumin.data_processing.hep_proc.fix_event_phi(df, ref_vec)

	Rotate event in phi such that ref_vec is at phi == 0. Performed inplace. Currently only works on vectors defined in pT, eta, phi

	Parameters

	
	df (DataFrame) – DataFrame to alter

	ref_vec (str) – column prefix of vector components to use as reference, e.g. ‘muon’ for columns [‘muon_pT’, ‘muon_eta’, ‘muon_phi’]

	Return type

	None

	
lumin.data_processing.hep_proc.fix_event_z(df, ref_vec)

	Flip event in z-axis such that ref_vec is in positive z-direction. Performed inplace. Works for both pT, eta, phi and Cartesian coordinates.

	Parameters

	
	df (DataFrame) – DataFrame to alter

	ref_vec (str) – column prefix of vector components to use as reference, e.g. ‘muon’ for columns [‘muon_pT’, ‘muon_eta’, ‘muon_phi’]

	Return type

	None

	
lumin.data_processing.hep_proc.fix_event_y(df, ref_vec_0, ref_vec_1)

	Flip event in y-axis such that ref_vec_1 has a higher py than ref_vec_0. Performed in place. Works for both pT, eta, phi and Cartesian coordinates.

	Parameters

	
	df (DataFrame) – DataFrame to alter

	ref_vec_0 (str) – column prefix of vector components to use as reference 0, e.g. ‘muon’ for columns [‘muon_pT’, ‘muon_eta’, ‘muon_phi’]

	ref_vec_1 (str) – column prefix of vector components to use as reference 1, e.g. ‘muon’ for columns [‘muon_pT’, ‘muon_eta’, ‘muon_phi’]

	Return type

	None

	
lumin.data_processing.hep_proc.event_to_cartesian(df, drop=False, ignore=None)

	Convert entire event to Cartesian coordinates, except vectors listed in ignore. Optionally, drop old pT,eta,phi features. Perfomed inplace.

	Parameters

	
	df (DataFrame) – DataFrame to alter

	drop (bool) – whether to drop old coordinates

	ignore (Optional[List[str]]) – vectors to ignore when converting

	Return type

	None

	
lumin.data_processing.hep_proc.proc_event(df, fix_phi=False, fix_y=False, fix_z=False, use_cartesian=False, ref_vec_0=None, ref_vec_1=None, keep_feats=None, default_vals=None)

	Process event: Pass data through inplace various conversions and drop uneeded columns. Data expected to consist of vectors defined in pT, eta, phi.

	Parameters

	
	df (DataFrame) – DataFrame to alter

	fix_phi (bool) – whether to rotate events using fix_event_phi()

	fix_y – whether to flip events using fix_event_y()

	fix_z – whether to flip events using fix_event_z()

	use_cartesian – wether to convert vectors to Cartesian coordinates

	ref_vec_0 (Optional[str]) – column prefix of vector components to use as reference (0) for :meth:~lumin.data_prcoessing.hep_proc.fix_event_phi`,
fix_event_y(), and fix_event_z()
e.g. ‘muon’ for columns [‘muon_pT’, ‘muon_eta’, ‘muon_phi’]

	ref_vec_1 (Optional[str]) – column prefix of vector components to use as reference (1) for fix_event_y(),
e.g. ‘muon’ for columns [‘muon_pT’, ‘muon_eta’, ‘muon_phi’]

	keep_feats (Optional[List[str]]) – columns to keep which would otherwise be dropped

	default_vals (Optional[List[str]]) – list of default values which might be used to represent missing vector components. These will be replaced with np.nan.

	Return type

	None

	
lumin.data_processing.hep_proc.calc_pair_mass(df, masses, feat_map)

	Vectorised computation of invarient mass of pair of particles with given masses, using 3-momenta. Only works for vectors defined in Cartesian coordinates.

	Parameters

	
	df (DataFrame) – DataFrame vector components

	masses (Union[Tuple[float, float], Tuple[ndarray, ndarray]]) – tuple of masses of particles (either constant or different pair of masses per pair of particles)

	feat_map (Dict[str, str]) – dictionary mapping of requested momentum components to the features in df

	Return type

	ndarray

	Returns

	np.ndarray of invarient masses

	
lumin.data_processing.hep_proc.boost(ref_vec, boost_vec, df=None, rescale_boost=False)

	Vectorised boosting of reference vectors along boosting vectors.
N.B. Implementation adapted from ROOT (https://root.cern/)

	Parameters

	
	vec_0 – either (N,4) array of 4-momenta coordinates for starting vector,
or prefix name for starting vector, i.e. columns should have names of the form [vec_0]_px, etc.

	vec_1 – either (N,4) array of 4-momenta coordinates for boosting vector,
or prefix name for boosting vector, i.e. columns should have names of the form [vec_1]_px, etc.

	df (Optional[DataFrame]) – DataFrame with data

	rescale_boost (bool) – whether to divide the boost vector by its energy

	Return type

	ndarray

	Returns

	(N,4) array of boosted vector in Cartesian coordinates

	
lumin.data_processing.hep_proc.boost2cm(vec, df=None)

	Vectorised computation of boosting vector required to boost a vector to its centre-of-mass frame

	Parameters

	
	vec (Union[ndarray, str]) – either (N,4) array of 4-momenta coordinates for starting vector,
or prefix name for starting vector, i.e. columns should have names of the form [vec]_px, etc.

	df (Optional[DataFrame]) – DataFrame with data is supplying a string vec

	Return type

	ndarray

	Returns

	(N,3) array of boosting vector in Cartesian coordinates

	
lumin.data_processing.hep_proc.get_momentum(df, vec, include_E=False, as_cart=False)

	Extracts array of 3- or 4-momenta coordinates from DataFrame columns

	Parameters

	
	df (DataFrame) – DataFrame with data

	vec (str) – prefix name for vector, i.e. columns should have names of the form [vec]_px, etc.

	as_cart (bool) – if True will return momenta in Cartesian coordinates

	Returns

	(px, py, pz, (E)) or (pT, phi, eta, (E))

	Return type

	(N, 3|4) array with columns

	
lumin.data_processing.hep_proc.cos_delta(vec_0, vec_1, df=None, name=None, inplace=False)

	Vectorised compututation of the cosine of the angular seperation of vec_1 from vec_0
If vec_* are strings, then columns are extracted from DataFrame df.
If inplace is True Cosine angle is added a new column to the DataFrame with name cosdelta_[vec_0]_[vec_1] or cosdelta, unless name is set

	Parameters

	
	vec_0 (Union[ndarray, str]) – either (N,3) array of 3-momenta coordinates for vector 0,
or prefix name for vector zero, i.e. columns should have names of the form [vec_0]_px, etc.

	vec_1 (Union[ndarray, str]) – either (N,3) array of 3-momenta coordinates for vector 1,
or prefix name for vector one, i.e. columns should have names of the form [vec_1]_px, etc.

	df (Optional[DataFrame]) – DataFrame with data

	name (Optional[str]) – if set, will create a new column in df for cosdelta with given name, otherwise will generate a name

	inplace (bool) – if True will add new column to df, otherwise will return array of cos_deltas

	Return type

	Union[None, ndarray]

	Returns

	array of cos deltas in not inplace

	
lumin.data_processing.hep_proc.delta_r(dphi, deta)

	Vectorised computation of delta R separation for arrays of delta phi and delta eta (rapidity or pseudorapidity)

	Parameters

	
	dphi (Union[float, ndarray]) – delta phi separations

	deta (Union[float, ndarray]) – delta eta separations

	Return type

	Union[float, ndarray]

	Returns

	delta R separation as float or np.ndarray

	
lumin.data_processing.hep_proc.delta_r_boosted(vec_0, vec_1, ref_vec, df=None, name=None, inplace=False)

	Vectorised compututation of the deltaR seperation of vec_1 from vec_0 in the rest-frame of another vector
If vec_* are strings, then columns are extracted from DataFrame df.
If inplace is True deltaR is added a new column to the DataFrame with name dR_[vec_0]_[vec_1]_boosted_[ref_vec] or dR_boosted, unless name is set

	Parameters

	
	vec_0 (Union[ndarray, str]) – either (N,4) array of 4-momenta coordinates for vector 0, in Cartesian coordinates
or prefix name for vector zero, i.e. columns should have names of the form [vec_0]_px, etc.

	vec_1 (Union[ndarray, str]) – either (N,4) array of 4-momenta coordinates for vector 1, in Cartesian coordinates
or prefix name for vector one, i.e. columns should have names of the form [vec_1]_px, etc.

	ref_vec (Union[ndarray, str]) – either (N,4) array of 4-momenta coordinates for the vector in whos rest-frame deltaR should be computed, in Cartesian coordinates
or prefix name for reference vector, i.e. columns should have names of the form [ref_vec]_px, etc.

	df (Optional[DataFrame]) – DataFrame with data

	name (Optional[str]) – if set, will create a new column in df for cosdelta with given name, otherwise will generate a name

	inplace (bool) – if True will add new column to df, otherwise will return array of cos_deltas

	Return type

	Union[None, ndarray]

	Returns

	array of boosted deltaR in not inplace

lumin.data_processing.pre_proc module

	
lumin.data_processing.pre_proc.get_pre_proc_pipes(norm_in=True, norm_out=False, pca=False, whiten=False, with_mean=True, with_std=True, n_components=None)

	Configure SKLearn Pipelines for processing inputs and targets with the requested transformations.

	Parameters

	
	norm_in (bool) – whether to apply StandardScaler to inputs

	norm_out (bool) – whether to apply StandardScaler to outputs

	pca (bool) – whether to apply PCA to inputs. Perforemed prior to StandardScaler. No dimensionality reduction is applied, purely rotation.

	whiten (bool) – whether PCA should whiten inputs.

	with_mean (bool) – whether StandardScalers should shift means to 0

	with_std (bool) – whether StandardScalers should scale standard deviations to 1

	n_components (Optional[int]) – if set, causes PCA to reduce the dimensionality of the input data

	Return type

	Tuple[Pipeline, Pipeline]

	Returns

	Pipeline for input data
Pipeline for target data

	
lumin.data_processing.pre_proc.fit_input_pipe(df, cont_feats, savename=None, input_pipe=None, norm_in=True, pca=False, whiten=False, with_mean=True, with_std=True, n_components=None)

	Fit input pipeline to continuous features and optionally save.

	Parameters

	
	df (DataFrame) – DataFrame with data to fit pipeline

	cont_feats (Union[str, List[str]]) – (list of) column(s) to use as input data for fitting

	savename (Optional[str]) – if set will save the fitted Pipeline to with that name as Pickle (.pkl extension added automatically)

	input_pipe (Optional[Pipeline]) – if set will fit, otherwise will instantiate a new Pipeline

	norm_in (bool) – whether to apply StandardScaler to inputs. Only used if input_pipe is not set.

	pca (bool) – whether to apply PCA to inputs. Perforemed prior to StandardScaler.
No dimensionality reduction is applied, purely rotation. Only used if input_pipe is not set.

	whiten (bool) – whether PCA should whiten inputs. Only used if input_pipe is not set.

	with_mean (bool) – whether StandardScalers should shift means to 0. Only used if input_pipe is not set.

	with_std (bool) – whether StandardScalers should scale standard deviations to 1. Only used if input_pipe is not set.

	n_components (Optional[int]) – if set, causes PCA to reduce the dimensionality of the input data. Only used if input_pipe is not set.

	Return type

	Pipeline

	Returns

	Fitted Pipeline

	
lumin.data_processing.pre_proc.fit_output_pipe(df, targ_feats, savename=None, output_pipe=None, norm_out=True)

	Fit output pipeline to target features and optionally save. Have you thought about using a y_range for regression instead?

	Parameters

	
	df (DataFrame) – DataFrame with data to fit pipeline

	targ_feats (Union[str, List[str]]) – (list of) column(s) to use as input data for fitting

	savename (Optional[str]) – if set will save the fitted Pipeline to with that name as Pickle (.pkl extension added automatically)

	output_pipe (Optional[Pipeline]) – if set will fit, otherwise will instantiate a new Pipeline

	norm_out (bool) – whether to apply StandardScaler to outputs . Only used if output_pipe is not set.

	Return type

	Pipeline

	Returns

	Fitted Pipeline

	
lumin.data_processing.pre_proc.proc_cats(train_df, cat_feats, val_df=None, test_df=None)

	Process categorical features in train_df to be valued 0->cardinality-1. Applied inplace.
Applies same transformation to validation and testing data is passed.
Will complain if validation or testing sets contain categories which are not present in the training data.

	Parameters

	
	train_df (DataFrame) – DataFrame with the training data, which will also be used to specify all the categories to consider

	cat_feats (List[str]) – list of columns to use as categorical features

	val_df (Optional[DataFrame]) – if set will apply the same category to code mapping to the validation data as was performed on the training data

	test_df (Optional[DataFrame]) – if set will apply the same category to code mapping to the testing data as was performed on the training data

	Return type

	Tuple[OrderedDict, OrderedDict]

	Returns

	ordered dictionary mapping categorical features to dictionaries mapping categories to codes
ordered dictionary mapping categorical features to their cardinalities

Module contents

lumin.evaluation package

Submodules

lumin.evaluation.ams module

	
lumin.evaluation.ams.calc_ams(s, b, br=0, unc_b=0)

	Compute Approximate Median Significance (https://arxiv.org/abs/1007.1727)

	Parameters

	
	s (float) – signal weight

	b (float) – background weight

	br (float) – background offset bias

	unc_b (float) – fractional systemtatic uncertainty on background

	Return type

	float

	Returns

	Approximate Median Significance if b > 0 else -1

	
lumin.evaluation.ams.calc_ams_torch(s, b, br=0, unc_b=0)

	Compute Approximate Median Significance (https://arxiv.org/abs/1007.1727) using Tensor inputs

	Parameters

	
	s (Tensor) – signal weight

	b (Tensor) – background weight

	br (float) – background offset bias

	unc_b (float) – fractional systemtatic uncertainty on background

	Return type

	Tensor

	Returns

	Approximate Median Significance if b > 0 else 1e-18 * s

	
lumin.evaluation.ams.ams_scan_quick(df, wgt_factor=1, br=0, syst_unc_b=0, pred_name='pred', targ_name='gen_target', wgt_name='gen_weight')

	Scan accross a range of possible prediction thresholds in order to maximise the Approximate Median Significance (https://arxiv.org/abs/1007.1727).
Note that whilst this method is quicker than ams_scan_slow(), it sufferes from float precison.
Not recommended for final evaluation.

	Parameters

	
	df (DataFrame) – DataFrame containing prediction data

	wgt_factor (float) – factor to reweight signal and background weights

	br (float) – background offset bias

	syst_unc_b (float) – fractional systemtatic uncertainty on background

	pred_name (str) – column to use as predictions

	targ_name (str) – column to use as truth labels for signal and background

	wgt_name (str) – column to use as weights for signal and background events

	Return type

	Tuple[float, float]

	Returns

	maximum AMS
prediction threshold corresponding to maximum AMS

	
lumin.evaluation.ams.ams_scan_slow(df, wgt_factor=1, br=0, syst_unc_b=0, use_stat_unc=False, start_cut=0.9, min_events=10, pred_name='pred', targ_name='gen_target', wgt_name='gen_weight', show_prog=True)

	Scan accross a range of possible prediction thresholds in order to maximise the Approximate Median Significance (https://arxiv.org/abs/1007.1727).
Note that whilst this method is slower than ams_scan_quick(), it does not suffer as much from float precison.
Additionally it allows one to account for statistical uncertainty in AMS calculation.

	Parameters

	
	df (DataFrame) – DataFrame containing prediction data

	wgt_factor (float) – factor to reweight signal and background weights

	br (float) – background offset bias

	syst_unc_b (float) – fractional systemtatic uncertainty on background

	use_stat_unc (bool) – whether to account for the statistical uncertainty on the background

	start_cut (float) – minimum prediction to consider; useful for speeding up scan

	min_events (int) – minimum number of background unscaled events required to pass threshold

	pred_name (str) – column to use as predictions

	targ_name (str) – column to use as truth labels for signal and background

	wgt_name (str) – column to use as weights for signal and background events

	show_prog (bool) – whether to display progress and ETA of scan

	Return type

	Tuple[float, float]

	Returns

	maximum AMS
prediction threshold corresponding to maximum AMS

Module contents

lumin.inference package

Submodules

lumin.inference.summary_stat module

	
lumin.inference.summary_stat.bin_binary_class_pred(df, max_unc, consider_samples=None, step_sz=0.001, pred_name='pred', sample_name='gen_sample', compact_samples=False, class_name='gen_target', add_pure_signal_bin=False, max_unc_pure_signal=0.1, verbose=True)

	Define bin-edges for binning particle process samples as a function of event class prediction (signal | background) such that the statistical uncertainties on per bin yields are
below max_unc for each considered sample.

	Parameters

	
	df (DataFrame) – DataFrame containing the data

	max_unc (float) – maximum fractional statisitcal uncertainty to allow when defining bins

	consider_samples (Optional[List[str]]) – if set, only listed samples are considered when defining bins

	step_sz (float) – resolution of scan along event prediction

	pred_name (str) – column to use as event class prediction

	sample_name (str) – column to use as particle process fo reach event

	compact_samples (bool) – if true, will not consider samples when computing bin edges, only the class

	class_name (str) – name of column to use as class indicator

	add_pure_signal_bin (bool) – if true will attempt to add a bin which oonly contains signal (class 1) if the fractional bin-fill uncertainty would be less than
max_unc_pure_signal

	max_unc_pure_signal (float) – maximum fractional statisitcal uncertainty to allow when defining pure-signal bins

	verbose (bool) – whether to show progress bar

	Return type

	List[float]

	Returns

	list of bin edges

Module contents

lumin.nn package

Subpackages

	lumin.nn.callbacks package

	lumin.nn.data package

	lumin.nn.ensemble package

	lumin.nn.interpretation package

	lumin.nn.losses package

	lumin.nn.metrics package

	lumin.nn.models package

	lumin.nn.training package

Module contents

lumin.nn.callbacks package

Submodules

lumin.nn.callbacks.callback module

	
class lumin.nn.callbacks.callback.Callback(model=None, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Bases: lumin.nn.callbacks.abs_callback.AbsCallback

Base callback class from which other callbacks should inherit.

	Parameters

	
	model (Optional[AbsModel]) – model to refer to during training

	plot_settings (PlotSettings) – PlotSettings class

	
set_model(model)

	Sets the callback’s model in order to allow the callback to access and adjust model parameters

	Parameters

	model (AbsModel) – model to refer to during training

	Return type

	None

	
set_plot_settings(plot_settings)

	Sets the plot settings for any plots produced by the callback

	Parameters

	plot_settings (PlotSettings) – PlotSettings class

	Return type

	None

lumin.nn.callbacks.cyclic_callbacks module

	
class lumin.nn.callbacks.cyclic_callbacks.AbsCyclicCallback(interp, param_range, cycle_mult=1, decrease_param=False, scale=1, model=None, nb=None, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Bases: lumin.nn.callbacks.callback.Callback

Abstract class for callbacks affecting lr or mom

	Parameters

	
	interp (str) – string representation of interpolation function. Either ‘linear’ or ‘cosine’.

	param_range (Tuple[float, float]) – minimum and maximum values for parameter

	cycle_mult (int) – multiplicative factor for adjusting the cycle length after each cycle.
E.g cycle_mult=1 keeps the same cycle length, cycle_mult=2 doubles the cycle length after each cycle.

	decrease_param (bool) – whether to begin by decreasing the parameter, otherwise begin by increasing it

	scale (int) – multiplicative factor for setting the initial number of epochs per cycle.
E.g scale=1 means 1 epoch per cycle, scale=5 means 5 epochs per cycle.

	model (Optional[AbsModel]) – model to refer to during training

	nb (Optional[int]) – number of minibatches (iterations) to expect per epoch

	plot_settings (PlotSettings) – PlotSettings class

	
on_batch_begin(**kargs)

	Computes the new value for the optimiser parameter and returns it

	Return type

	float

	Returns

	new value for optimiser parameter

	
on_batch_end(**kargs)

	Increments the callback’s progress through the cycle

	Return type

	None

	
on_epoch_begin(**kargs)

	Ensures the cycle_end flag is false when the epoch starts

	Return type

	None

	
plot()

	Plots the history of the parameter evolution as a function of iterations

	Return type

	None

	
set_nb(nb)

	Sets the callback’s internal number of iterations per cycle equal to nb*scale

	Parameters

	nb (int) – number of minibatches per epoch

	Return type

	None

	
class lumin.nn.callbacks.cyclic_callbacks.CycleLR(lr_range, interp='cosine', cycle_mult=1, decrease_param='auto', scale=1, model=None, nb=None, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Bases: lumin.nn.callbacks.cyclic_callbacks.AbsCyclicCallback

Callback to cycle learning rate during training according to either:
cosine interpolation for SGDR https://arxiv.org/abs/1608.03983
or linear interpolation for Smith cycling https://arxiv.org/abs/1506.01186

	Parameters

	
	lr_range (Tuple[float, float]) – tuple of initial and final LRs

	interp (str) – ‘cosine’ or ‘linear’ interpolation

	cycle_mult (int) – Multiplicative constant for altering the cycle length after each complete cycle

	decrease_param (Union[str, bool]) – whether to increase or decrease the LR (effectively reverses lr_range order), ‘auto’ selects according to interp

	scale (int) – Multiplicative constant for altering the length of a cycle. 1 corresponds to one cycle = one (sub-)epoch

	model (Optional[AbsModel]) – Model to alter, alternatively call set_model().

	nb (Optional[int]) – Number of batches in a (sub-)epoch

	plot_settings (PlotSettings) – PlotSettings class to control figure appearance

	Examples::
	>>> cosine_lr = CycleLR(lr_range=(0, 2e-3), cycle_mult=2, scale=1,
... interp='cosine', nb=100)
>>>
>>> cyclical_lr = CycleLR(lr_range=(2e-4, 2e-3), cycle_mult=1, scale=5,
 interp='linear', nb=100)

	
on_batch_begin(**kargs)

	Computes the new lr and assignes it to the optimiser

	Return type

	None

	
class lumin.nn.callbacks.cyclic_callbacks.CycleMom(mom_range, interp='cosine', cycle_mult=1, decrease_param='auto', scale=1, model=None, nb=None, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Bases: lumin.nn.callbacks.cyclic_callbacks.AbsCyclicCallback

Callback to cycle momentum (beta 1) during training according to either:
cosine interpolation for SGDR https://arxiv.org/abs/1608.03983
or linear interpolation for Smith cycling https://arxiv.org/abs/1506.01186
By default is set to evolve in opposite direction to learning rate, a la https://arxiv.org/abs/1803.09820

	Parameters

	
	mom_range (Tuple[float, float]) – tuple of initial and final momenta

	interp (str) – ‘cosine’ or ‘linear’ interpolation

	cycle_mult (int) – Multiplicative constant for altering the cycle length after each complete cycle

	decrease_param (Union[str, bool]) – whether to increase or decrease the momentum (effectively reverses mom_range order), ‘auto’ selects according to interp

	scale (int) – Multiplicative constant for altering the length of a cycle. 1 corresponds to one cycle = one (sub-)epoch

	model (Optional[AbsModel]) – Model to alter, alternatively call set_model()

	nb (Optional[int]) – Number of batches in a (sub-)epoch

	plot_settings (PlotSettings) – PlotSettings class to control figure appearance

	Examples::
	>>> cyclical_mom = CycleMom(mom_range=(0.85 0.95), cycle_mult=1,
... scale=5, interp='linear', nb=100)

	
on_batch_begin(**kargs)

	Computes the new momentum and assignes it to the optimiser

	Return type

	None

	
class lumin.nn.callbacks.cyclic_callbacks.OneCycle(lengths, lr_range, mom_range=(0.85, 0.95), interp='cosine', model=None, nb=None, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Bases: lumin.nn.callbacks.cyclic_callbacks.AbsCyclicCallback

Callback implementing Smith 1-cycle evolution for lr and momentum (beta_1) https://arxiv.org/abs/1803.09820
Default interpolation uses fastai-style cosine function.
Automatically triggers early stopping on cycle completion.

	Parameters

	
	lengths (Tuple[int, int]) – tuple of number of (sub-)epochs in first and second stages of cycle

	lr_range (List[float]) – list of initial and max LRs and optionally a final LR. If only two LRs supplied, then final LR will be zero.

	mom_range (Tuple[float, float]) – tuple of initial and final momenta

	interp (str) – ‘cosine’ or ‘linear’ interpolation

	model (Optional[AbsModel]) – Model to alter, alternatively call set_model()

	nb (Optional[int]) – Number of batches in a (sub-)epoch

	plot_settings (PlotSettings) – PlotSettings class to control figure appearance

	Examples::
	>>> onecycle = OneCycle(lengths=(15, 30), lr_range=[1e-4, 1e-2],
... mom_range=(0.85, 0.95), interp='cosine', nb=100)

	
on_batch_begin(**kargs)

	Computes the new lr and momentum and assignes them to the optimiser

	Return type

	None

	
plot()

	Plots the history of the lr and momentum evolution as a function of iterations

lumin.nn.callbacks.data_callbacks module

	
class lumin.nn.callbacks.data_callbacks.BinaryLabelSmooth(coefs=0, model=None)

	Bases: lumin.nn.callbacks.callback.Callback

Callback for applying label smoothing to binary classes, based on https://arxiv.org/abs/1512.00567
Applies smoothing during both training and inference.

	Parameters

	
	coefs (Union[float, Tuple[float, float]]) – Smoothing coefficients: 0->coef[0] 1->1-coef[1]. if passed float, coef[0]=coef[1]

	model (Optional[AbsModel]) – not used, only for compatability

	Examples::
	>>> lbl_smooth = BinaryLabelSmooth(0.1)
>>>
>>> lbl_smooth = BinaryLabelSmooth((0.1, 0.02))

	
on_epoch_begin(by, **kargs)

	Apply smoothing at train-time

	Return type

	None

	
on_eval_begin(targets, **kargs)

	Apply smoothing at test-time

	Return type

	None

	
class lumin.nn.callbacks.data_callbacks.SequentialReweight(reweight_func, scale=0.1, model=None)

	Bases: lumin.nn.callbacks.callback.Callback

Caution

Experiemntal proceedure

During ensemble training, sequentially reweight training data in last validation fold based on prediction performance of last trained model.
Reweighting highlights data which are easier or more difficult to predict to the next model being trained.

	Parameters

	
	reweight_func (Callable[[Tensor, Tensor], Tensor]) – callable function returning a tensor of same shape as targets, ideally quantifying model-prediction performance

	scale (float) – multiplicative factor for rescaling returned tensor of reweight_func

	model (Optional[AbsModel]) – Model to provide predictions, alternatively call set_model()

	Examples::
	>>> seq_reweight = SequentialReweight(
... reweight_func=nn.BCELoss(reduction='none'), scale=0.1)

	
on_train_end(fy, val_id, bs=None, **kargs)

	Reweighs the validation fold once training is finished

	Parameters

	
	fy (FoldYielder) – FoldYielder providing the training and validation data

	fold_id – Fold index which was used for validation

	Return type

	None

	
class lumin.nn.callbacks.data_callbacks.SequentialReweightClasses(reweight_func, scale=0.1, model=None)

	Bases: lumin.nn.callbacks.data_callbacks.SequentialReweight

Caution

Experiemntal proceedure

Version of SequentialReweight designed for classification, which renormalises class weights to original weight-sum after reweighting
During ensemble training, sequentially reweight training data in last validation fold based on prediction performance of last trained model.
Reweighting highlights data which are easier or more difficult to predict to the next model being trained.

	Parameters

	
	reweight_func (Callable[[Tensor, Tensor], Tensor]) – callable function returning a tensor of same shape as targets, ideally quantifying model-prediction performance

	scale (float) – multiplicative factor for rescaling returned tensor of reweight_func

	model (Optional[AbsModel]) – Model to provide predictions, alternatively call set_model()

	Examples::
	>>> seq_reweight = SequentialReweight(
... reweight_func=nn.BCELoss(reduction='none'), scale=0.1)

	
class lumin.nn.callbacks.data_callbacks.BootstrapResample(n_folds, bag_each_time=False, reweight=True, model=None)

	Bases: lumin.nn.callbacks.callback.Callback

Callback for bootstrap sampling new training datasets from original training data during (ensemble) training.

	Parameters

	
	n_folds (int) – the number of folds present in training FoldYielder

	bag_each_time (bool) – whether to sample a new set for each sub-epoch or to use the same sample each time

	reweight (bool) – whether to reweight the sampleed data to mathch the weight sum (per class) of the original data

	model (Optional[AbsModel]) – not used, only for compatability

	Examples::
	>>> bs_resample BootstrapResample(n_folds=len(train_fy))

	
on_epoch_begin(by, **kargs)

	Resamples training data for new epoch

	Parameters

	by (BatchYielder) – BatchYielder providing data for the upcoming epoch

	Return type

	None

	
on_train_begin(**kargs)

	Resets internal parameters to prepare for a new training

	Return type

	None

	
class lumin.nn.callbacks.data_callbacks.ParametrisedPrediction(feats, param_feat, param_val, model=None)

	Bases: lumin.nn.callbacks.callback.Callback

Callback for running predictions for a parametersied network (https://arxiv.org/abs/1601.07913); one which has been trained using one of more inputs which
represent e.g. different hypotheses for the classes such as an unknown mass of some new particle.
In such a scenario, multiple signal datasets could be used for training, with background receiving a random mass. During prediction one then needs to set
these parametrisation features all to the same values to evaluat the model’s response for that hypothesis.
This callback can be passed to the predict method of the model/ensemble to adjust the parametrisation features to the desired values.

	Parameters

	
	feats (List[str]) – list of feature names used during training (in the same order)

	param_feat (Union[List[str], str]) – the feature name which is to be adjusted, or a list of features to adjust

	param_val (Union[List[float], float]) – the value to which to set the paramertisation feature, of the list of values to set the parameterisation features to

	model (Optional[AbsModel]) – unused, purely for compatability, just leave it as None

	Examples::
	>>> mass_param = ParametrisedPrediction(train_feats, 'res_mass', 300)
>>> model.predict(fold_yeilder, pred_name=f'pred_mass_300', callbacks=[mass_param])
>>>
>>> mass_param = ParametrisedPrediction(train_feats, 'res_mass', 300)
>>> spin_param = ParametrisedPrediction(train_feats, 'spin', 1)
>>> model.predict(fold_yeilder, pred_name=f'pred_mass_300', callbacks=[mass_param, spin_param])

	
on_pred_begin(inputs, **kargs)

	Adjusts the data to be passed to the model by setting in place the parameterisation feature to the preset value

	Parameters

	inputs (Union[ndarray, DataFrame, Tensor]) – data which will later be passed to the model

	Return type

	None

lumin.nn.callbacks.loss_callbacks module

	
class lumin.nn.callbacks.loss_callbacks.GradClip(clip, clip_norm=True, model=None)

	Bases: lumin.nn.callbacks.callback.Callback

Callback for clipping gradients by norm or value.

	Parameters

	
	clip (float) – value to clip at

	clip_norm (bool) – whether to clip according to norm (torch.nn.utils.clip_grad_norm_) or value (torch.nn.utils.clip_grad_value_)

	model (Optional[AbsModel]) – Model with parameters to clip gradients, alternatively call set_model()

	Examples::
	>>> grad_clip = GradClip(1e-5)

	
on_backwards_end(**kargs)

	Clips gradients prior to parameter updates

	Return type

	None

lumin.nn.callbacks.lsuv_init module

This file contains code modfied from https://github.com/ducha-aiki/LSUV-pytorch which is made available under the following BSD 2-Clause “Simplified” Licence:
Copyright (C) 2017, Dmytro Mishkin
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The Apache Licence 2.0 underwhich the majority of the rest of LUMIN is distributed does not apply to the code within this file.

	
class lumin.nn.callbacks.lsuv_init.LsuvInit(needed_std=1.0, std_tol=0.1, max_attempts=10, do_orthonorm=True, verbose=False, model=None)

	Bases: lumin.nn.callbacks.callback.Callback

Applies Layer-Sequential Unit-Variance (LSUV) initialisation to model, as per Mishkin & Matas 2016 https://arxiv.org/abs/1511.06422.
When training begins for the first time, Conv1D, Conv2D, Conv3D, and Linear modules in the model will be LSUV initialised using the BatchYielder
inputs.
This involves initialising the weights with orthonormal matirces and then iteratively scaling them such that the stadndar deviation of the layer outputs is
equal to a desired value, within some tolerance.

	Parameters

	
	needed_std (float) – desired standard deviation of layer outputs

	std_tol (float) – tolerance for matching standard deviation with target

	max_attempts (int) – number of times to attempt weight scaling per layer

	do_orthonorm (bool) – whether to apply orthonormal initialisation first, or rescale the exisiting values

	verbose (bool) – whether to print out details of the rescaling

	model (Optional[AbsModel]) – Model to provide parameters, alternatively call set_model()

	Example::
	>>> lsuv = LsuvInit()
>>>
>>> lsuv = LsuvInit(verbose=True)
>>>
>>> lsuv = LsuvInit(needed_std=0.5, std_tol=0.01, max_attempts=100, do_orthonorm=True)

	
on_epoch_begin(by, **kargs)

	If the LSUV process has yet to run, then it will run using all of the input data provided by the BatchYielder

	Parameters

	by (BatchYielder) – BatchYielder providing data for the upcoming epoch

	Return type

	None

	
on_train_begin(**kargs)

	Sets the callback to initialise the model the first time that on_epoch_begin is called.

	Return type

	None

lumin.nn.callbacks.model_callbacks module

	
class lumin.nn.callbacks.model_callbacks.SWA(start_epoch, renewal_period=-1, model=None, val_fold=None, cyclic_callback=None, update_on_cycle_end=None, verbose=False, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Bases: lumin.nn.callbacks.model_callbacks.AbsModelCallback

Callback providing Stochastic Weight Averaging based on (https://arxiv.org/abs/1803.05407)
This adapted version allows the tracking of a pair of average models in order to avoid having to hardcode a specific start point for averaging:

	Model average x0 will begin to be tracked start_epoch (sub-)epochs/cycles after training begins.

	cycle_since_replacement is set to 1

	Renewal_period (sub-)epochs/cycles later, a second average x1 will be tracked.

	At the next renewal period, the performance of x0 and x1 will be compared on data contained in val_fold.

	
	If x0 is better than x1:
	
	x1 is replaced by a copy of the current model

	cycle_since_replacement is increased by 1

	renewal_period is multiplied by cycle_since_replacement

	
	Else:
	
	x0 is replaced by x1

	x1 is replaced by a copy of the current model

	cycle_since_replacement is set to 1

	renewal_period is set back to its original value

Additonally, will optionally (default True) lock-in to any cyclical callbacks to only update at the end of a cycle.

	Parameters

	
	start_epoch (int) – (sub-)epoch/cycle to begin averaging

	renewal_period (int) – How often to check performance of averages, and renew tracking of least performant

	model (Optional[AbsModel]) – Model to provide parameters, alternatively call set_model()

	val_fold (Optional[Dict[str, ndarray]]) – Dictionary containing inputs, targets, and weights (or None) as Numpy arrays

	cyclic_callback (Optional[AbsCyclicCallback]) – Optional for any cyclical callback which is running

	update_on_cycle_end (Optional[bool]) – Whether to lock in to the cyclic callback and only update at the end of a cycle. Default yes, if cyclic callback present.

	verbose (bool) – Whether to print out update information for testing and operation confirmation

	plot_settings (PlotSettings) – PlotSettings class to control figure appearance

	Examples::
	>>> swa = SWA(start_epoch=5, renewal_period=5)

	
get_loss(bs=None, use_weights=True, callbacks=None)

	Evaluates SWA model and returns loss

	Parameters

	
	bs (Optional[int]) – If not None, will evaluate loss in batches, rather than loading whole fold onto device

	use_weights (bool) – Whether to compute weighted loss if weights are present

	callbacks (Optional[List[AbsCallback]]) – list of any callbacks to use during evaluation

	Return type

	float

	Returns

	Loss on validation fold for oldest SWA average

	
on_epoch_begin(**kargs)

	Resets loss to prepare for new epoch

	Return type

	None

	
on_epoch_end(**kargs)

	Checks whether averages should be updated (or reset) and increments counters

	Return type

	None

	
on_train_begin(**kargs)

	Initialises model variables to begin tracking new model averages

	Return type

	None

	
class lumin.nn.callbacks.model_callbacks.AbsModelCallback(model=None, val_fold=None, cyclic_callback=None, update_on_cycle_end=None, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Bases: lumin.nn.callbacks.callback.Callback

Abstract class for callbacks which provide alternative models during training

	Parameters

	
	model (Optional[AbsModel]) – Model to provide parameters, alternatively call set_model()

	val_fold (Optional[Dict[str, ndarray]]) – Dictionary containing inputs, targets, and weights (or None) as Numpy arrays

	cyclic_callback (Optional[AbsCyclicCallback]) – Optional for any cyclical callback which is running

	update_on_cycle_end (Optional[bool]) – Whether to lock in to the cyclic callback and only update at the end of a cycle. Default yes, if cyclic callback present.

	plot_settings (PlotSettings) – PlotSettings class to control figure appearance

	
abstract get_loss(bs=None, use_weights=True, callbacks=None)

	
	Return type

	float

	
set_cyclic_callback(cyclic_callback)

	Sets the cyclical callback to lock into for updating new models

	Return type

	None

	
set_val_fold(val_fold)

	Sets the validation fold used for evaluating new models

	Return type

	None

lumin.nn.callbacks.opt_callbacks module

	
class lumin.nn.callbacks.opt_callbacks.LRFinder(nb, lr_bounds=[1e-07, 10], model=None, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Bases: lumin.nn.callbacks.callback.Callback

Callback class for Smith learning-rate range test (https://arxiv.org/abs/1803.09820)

	Parameters

	
	nb (int) – number of batches in a (sub-)epoch

	lr_bounds (Tuple[float, float]) – tuple of initial and final LR

	model (Optional[AbsModel]) – Model to alter, alternatively call set_model()

	plot_settings (PlotSettings) – PlotSettings class to control figure appearance

	
get_df()

	Returns a DataFrame of LRs and losses

	Return type

	DataFrame

	
on_batch_end(loss, **kargs)

	Records loss and increments LR

	Parameters

	loss (float) – training loss for most recent batch

	Return type

	None

	
on_train_begin(**kargs)

	Prepares variables and optimiser for new training

	Return type

	None

	
plot(n_skip=0, n_max=None, lim_y=None)

	Plot the loss as a function of the LR.

	Parameters

	
	n_skip (int) – Number of initial iterations to skip in plotting

	n_max (Optional[int]) – Maximum iteration number to plot

	lim_y (Optional[Tuple[float, float]]) – y-range for plotting

	Return type

	None

	
plot_lr()

	Plot the LR as a function of iterations.

	Return type

	None

Module contents

lumin.nn.data package

Submodules

lumin.nn.data.batch_yielder module

	
class lumin.nn.data.batch_yielder.BatchYielder(inputs, targets, bs, objective, weights=None, shuffle=True, use_weights=True, bulk_move=True)

	Bases: object

Yields minibatches to model during training. Iteration provides one minibatch as tuple of tensors of inputs, targets, and weights.

	Parameters

	
	inputs (Union[ndarray, Tuple[ndarray, ndarray]]) – input array for (sub-)epoch

	targets (ndarray) – targte array for (sub-)epoch

	bs (int) – batchsize, number of data to include per minibatch

	objective (str) – ‘classification’, ‘multiclass classification’, or ‘regression’. Used for casting target dtype.

	weights (Optional[ndarray]) – Optional weight array for (sub-)epoch

	shuffle (bool) – whether to shuffle the data at the beginning of an iteration

	use_weights (bool) – if passed weights, whether to actually pass them to the model

	bulk_move (bool) – whether to move all data to device at once. Default is true (saves time), but if device has low memory you can set to False.

	
get_inputs(on_device=False)

	
	Return type

	Union[Tensor, Tuple[Tensor, Tensor]]

lumin.nn.data.fold_yielder module

	
class lumin.nn.data.fold_yielder.FoldYielder(foldfile, cont_feats=None, cat_feats=None, ignore_feats=None, input_pipe=None, output_pipe=None, yield_matrix=True, matrix_pipe=None)

	Bases: object

Interface class for accessing data from foldfiles created by df2foldfile()

	Parameters

	
	foldfile (Union[str, Path, File]) – filename of hdf5 file or opened hdf5 file

	cont_feats (Optional[List[str]]) – list of names of continuous features present in input data, not required if foldfile contains meta data already

	cat_feats (Optional[List[str]]) – list of names of categorical features present in input data, not required if foldfile contains meta data already

	ignore_feats (Optional[List[str]]) – optional list of input features which should be ignored

	input_pipe (Union[str, Pipeline, Path, None]) – optional Pipeline, or filename for pickled Pipeline, which was used for processing the inputs

	output_pipe (Union[str, Pipeline, Path, None]) – optional Pipeline, or filename for pickled Pipeline, which was used for processing the targets

	yield_matrix (bool) – whether to actually yield matrix data if present

	matrix_pipe (Union[str, Pipeline, Path, None]) – preprocessing pipe for matrix data

	Examples::
	>>> fy = FoldYielder('train.h5')
>>>
>>> fy = FoldYielder('train.h5', ignore_feats=['phi'], input_pipe='input_pipe.pkl')
>>>
>>> fy = FoldYielder('train.h5', input_pipe=input_pipe, matrix_pipe=matrix_pipe)
>>>
>>> fy = FoldYielder('train.h5', input_pipe=input_pipe, yield_matrix=False)

	
add_ignore(feats)

	Add features to ignored features.

	Parameters

	feats (List[str]) – list of feature names to ignore

	Return type

	None

	
add_input_pipe(input_pipe)

	Adds an input pipe to the FoldYielder for use when deprocessing data

	Parameters

	input_pipe (Union[str, Pipeline]) – Pipeline which was used for preprocessing the input data or name of pkl file containing Pipeline

	Return type

	None

	
add_input_pipe_from_file(name)

	Adds an input pipe from a pkl file to the FoldYielder for use when deprocessing data

	Parameters

	name (str) – name of pkl file containing Pipeline which was used for preprocessing the input data

	Return type

	None

	
add_matrix_pipe(matrix_pipe)

	Adds an matrix pipe to the FoldYielder for use when deprocessing data

Warning

Deprocessing matrix data is not yet implemented

	Parameters

	matrix_pipe (Union[str, Pipeline]) – Pipeline which was used for preprocessing the input data or name of pkl file containing Pipeline

	Return type

	None

	
add_matrix_pipe_from_file(name)

	Adds an matrix pipe from a pkl file to the FoldYielder for use when deprocessing data

	Parameters

	name (str) – name of pkl file containing Pipeline which was used for preprocessing the matrix data

	Return type

	None

	
add_output_pipe(output_pipe)

	Adds an output pipe to the FoldYielder for use when deprocessing data

	Parameters

	output_pipe (Union[str, Pipeline]) – Pipeline which was used for preprocessing the target data or name of pkl file containing Pipeline

	Return type

	None

	
add_output_pipe_from_file(name)

	Adds an output pipe from a pkl file to the FoldYielder for use when deprocessing data

	Parameters

	name (str) – name of pkl file containing Pipeline which was used for preprocessing the target data

	Return type

	None

	
close()

	Closes the foldfile

	Return type

	None

	
columns()

	Returns list of columns present in foldfile

	Return type

	List[str]

	Returns

	list of columns present in foldfile

	
get_column(column, n_folds=None, fold_idx=None, add_newaxis=False)

	Load column (h5py group) from foldfile. Used for getting arbitrary data which isn’t automatically grabbed by other methods.

	Parameters

	
	column (str) – name of h5py group to get

	n_folds (Optional[int]) – number of folds to get data from. Default all folds. Not compatable with fold_idx

	fold_idx (Optional[int]) – Only load group from a single, specified fold. Not compatable with n_folds

	add_newaxis (bool) – whether expand shape of returned data if data shape is ()

	Return type

	Optional[ndarray]

	Returns

	Numpy array of column data

	
get_data(n_folds=None, fold_idx=None)

	Get data for single, specified fold or several of folds. Data consists of dictionary of inputs, targets, and weights.
Does not account for ignored features.
Inputs are passed through np.nan_to_num to deal with nans and infs.

	Parameters

	
	n_folds (Optional[int]) – number of folds to get data from. Default all folds. Not compatable with fold_idx

	fold_idx (Optional[int]) – Only load group from a single, specified fold. Not compatable with n_folds

	Return type

	Dict[str, ndarray]

	Returns

	tuple of inputs, targets, and weights as Numpy arrays

	
get_df(pred_name='pred', targ_name='targets', wgt_name='weights', n_folds=None, fold_idx=None, inc_inputs=False, inc_ignore=False, deprocess=False, verbose=True, suppress_warn=False, nan_to_num=False, inc_matrix=False)

	Get a Pandas DataFrameof the data in the foldfile. Will add columns for inputs (if requested), targets, weights, and predictions (if present)

	Parameters

	
	pred_name (str) – name of prediction group

	targ_name (str) – name of target group

	wgt_name (str) – name of weight group

	n_folds (Optional[int]) – number of folds to get data from. Default all folds. Not compatable with fold_idx

	fold_idx (Optional[int]) – Only load group from a single, specified fold. Not compatable with n_folds

	inc_inputs (bool) – whether to include input data

	inc_ignore (bool) – whether to include ignored features

	deprocess (bool) – whether to deprocess inputs and targets if pipelines have been

	verbose (bool) – whether to print the number of datapoints loaded

	suppress_warn (bool) – whether to supress the warning about missing columns

	nan_to_num (bool) – whether to pass input data through np.nan_to_num

	inc_matrix (bool) – whether to include flattened matrix data in output, if present

	Return type

	DataFrame

	Returns

	Pandas DataFrame with requested data

	
get_fold(idx)

	Get data for single fold. Data consists of dictionary of inputs, targets, and weights.
Accounts for ignored features.
Inputs, except for matrix data, are passed through np.nan_to_num to deal with nans and infs.

	Parameters

	idx (int) – fold index to load

	Return type

	Dict[str, ndarray]

	Returns

	tuple of inputs, targets, and weights as Numpy arrays

	
get_ignore()

	Returns list of ignored features

	Return type

	List[str]

	Returns

	Features removed from training data

	
get_use_cat_feats()

	Returns list of categorical features which will be present in training data, accounting for ignored features.

	Return type

	List[str]

	Returns

	List of categorical features

	
get_use_cont_feats()

	Returns list of continuous features which will be present in training data, accounting for ignored features.

	Return type

	List[str]

	Returns

	List of continuous features

	
save_fold_pred(pred, fold_idx, pred_name='pred')

	Save predictions for given fold as a new column in the foldfile

	Parameters

	
	pred (ndarray) – array of predictions in the same order as data appears in the file

	fold_idx (int) – index for fold

	pred_name (str) – name of column to save predictions under

	Return type

	None

	
class lumin.nn.data.fold_yielder.HEPAugFoldYielder(foldfile, cont_feats=None, cat_feats=None, ignore_feats=None, targ_feats=None, rot_mult=2, random_rot=False, reflect_x=False, reflect_y=True, reflect_z=True, train_time_aug=True, test_time_aug=True, input_pipe=None, output_pipe=None, yield_matrix=True, matrix_pipe=None)

	Bases: lumin.nn.data.fold_yielder.FoldYielder

Specialised version of FoldYielder providing HEP specific data augmetation at train and test time.

	Parameters

	
	foldfile (Union[str, Path, File]) – filename of hdf5 file or opened hdf5 file

	cont_feats (Optional[List[str]]) – list of names of continuous features present in input data, not required if foldfile contains meta data already

	cat_feats (Optional[List[str]]) – list of names of categorical features present in input data, not required if foldfile contains meta data already

	ignore_feats (Optional[List[str]]) – optional list of input features which should be ignored

	targ_feats (Optional[List[str]]) – optional list of target features to also be transformed

	rot_mult (int) – number of rotations of event in phi to make at test-time (currently must be even).
Greater than zero will also apply random rotations during train-time

	random_rot (bool) – whether test-time rotation angles should be random or in steps of 2pi/rot_mult

	reflect_x (bool) – whether to reflect events in x axis at train and test time

	reflect_y (bool) – whether to reflect events in y axis at train and test time

	reflect_z (bool) – whether to reflect events in z axis at train and test time

	train_time_aug (bool) – whether to apply augmentations at train time

	test_time_aug (bool) – whether to apply augmentations at test time

	input_pipe (Optional[Pipeline]) – optional Pipeline, or filename for pickled Pipeline, which was used for processing the inputs

	output_pipe (Optional[Pipeline]) – optional Pipeline, or filename for pickled Pipeline, which was used for processing the targets

	yield_matrix (bool) – whether to actually yield matrix data if present

	matrix_pipe (Union[str, Pipeline, None]) – preprocessing pipe for matrix data

	Examples::
	>>> fy = HEPAugFoldYielder('train.h5',
... cont_feats=['pT','eta','phi','mass'],
... rot_mult=2, reflect_y=True, reflect_z=True,
... input_pipe='input_pipe.pkl')

	
get_fold(idx)

	Get data for single fold applying random train-time data augmentaion. Data consists of dictionary of inputs, targets, and weights.
Accounts for ignored features.
Inputs, except for matrix data, are passed through np.nan_to_num to deal with nans and infs.

	Parameters

	idx (int) – fold index to load

	Return type

	Dict[str, ndarray]

	Returns

	tuple of inputs, targets, and weights as Numpy arrays

	
get_test_fold(idx, aug_idx)

	Get test data for single fold applying test-time data augmentaion. Data consists of dictionary of inputs, targets, and weights.
Accounts for ignored features.
Inputs, except for matrix data, are passed through np.nan_to_num to deal with nans and infs.

	Parameters

	
	idx (int) – fold index to load

	aug_idx (int) – index for the test-time augmentaion (ignored if random test-time augmentation requested)

	Return type

	Dict[str, ndarray]

	Returns

	tuple of inputs, targets, and weights as Numpy arrays

Module contents

lumin.nn.ensemble package

Submodules

lumin.nn.ensemble.ensemble module

	
class lumin.nn.ensemble.ensemble.Ensemble(input_pipe=None, output_pipe=None, model_builder=None)

	Bases: lumin.nn.ensemble.abs_ensemble.AbsEnsemble

Standard class for building an ensemble of collection of trained networks producedd by fold_train_ensemble()
Input and output pipelines can be added. to provide easy saving and loaded of exported ensembles.
Currently, the input pipeline is not used, so input data is expected to be preprocessed.
However the output pipeline will be used to deprocess model predictions.

Once instanciated, lumin.nn.ensemble.ensemble.Ensemble.build_ensemble() or :meth:load should be called. Alternatively, class_methods lumin.nn.ensemble.ensemble.Ensemble.from_save() or lumin.nn.ensemble.ensemble.Ensemble.from_results() may be used.

	Parameters

	
	input_pipe (Optional[Pipeline]) – Optional input pipeline, alternatively call lumin.nn.ensemble.ensemble.Ensemble.add_input_pipe()

	output_pipe (Optional[Pipeline]) – Optional output pipeline, alternatively call lumin.nn.ensemble.ensemble.Ensemble.add_ouput_pipe()

	model_builder (Optional[ModelBuilder]) – Optional ModelBuilder for constructing models from saved weights.

	Examples::
	>>> ensemble = Ensemble()
>>>
>>> ensemble = Ensemble(input_pipe, output_pipe, model_builder)

	
add_input_pipe(pipe)

	Add input pipeline for saving

	Parameters

	pipe (Pipeline) – pipeline used for preprocessing input data

	Return type

	None

	
add_output_pipe(pipe)

	Add output pipeline for saving

	Parameters

	pipe (Pipeline) – pipeline used for preprocessing target data

	Return type

	None

	
build_ensemble(results, size, model_builder, metric='loss', weighting='reciprocal', higher_metric_better=False, snapshot_args=None, location=PosixPath('train_weights'), verbose=True)

	Load up an instantiated Ensemble with outputs of fold_train_ensemble()

	Parameters

	
	results (List[Dict[str, float]]) – results saved/returned by fold_train_ensemble()

	size (int) – number of models to load as ranked by metric

	model_builder (ModelBuilder) – ModelBuilder used for building Model from saved models

	metric (str) – metric name listed in results to use for ranking and weighting trained models

	weighting (str) – ‘reciprocal’ or ‘uniform’ how to weight model predictions during predicition.
‘reciprocal’ = models weighted by 1/metric
‘uniform’ = models treated with equal weighting

	higher_metric_better (bool) – whether metric should be maximised or minimised

	snapshot_args (Optional[Dict[str, Any]]) – Dictionary potentially containing:
‘cycle_losses’: returned/save by fold_train_ensemble() when using an AbsCyclicCallback
‘patience’: patience value that was passed to fold_train_ensemble()
‘n_cycles’: number of cycles to load per model
‘load_cycles_only’: whether to only load cycles, or also the best performing model
‘weighting_pwr’: weight cycles according to (n+1)**weighting_pwr, where n is the number of cycles loaded so far.

Models are loaded youngest to oldest

	location (Path) – Path to save location passed to fold_train_ensemble()

	verbose (bool) – whether to print out information of models loaded

	Examples::
	>>> ensemble.build_ensemble(results, 10, model_builder,
... location=Path('train_weights'))
>>>
>>> ensemble.build_ensemble(
... results, 1, model_builder,
... location=Path('train_weights'),
... snapshot_args={'cycle_losses':cycle_losses,
... 'patience':patience,
... 'n_cycles':8,
... 'load_cycles_only':True,
... 'weighting_pwr':0})

	Return type

	None

	
export2onnx(base_name, bs=1)

	Export all Model contained in Ensemble to ONNX format.
Note that ONNX expects a fixed batch size (bs) which is the number of datapoints your wish to pass through the model concurrently.

	Parameters

	
	base_name (str) – Exported models will be called {base_name}_{model_num}.onnx

	bs (int) – batch size for exported models

	Return type

	None

	
export2tfpb(base_name, bs=1)

	Export all Model contained in Ensemble to Tensorflow ProtocolBuffer format, via ONNX.
Note that ONNX expects a fixed batch size (bs) which is the number of datapoints your wish to pass through the model concurrently.

	Parameters

	
	base_name (str) – Exported models will be called {base_name}_{model_num}.pb

	bs (int) – batch size for exported models

	Return type

	None

	
classmethod from_models(models, weights=None, results=None, input_pipe=None, output_pipe=None, model_builder=None)

	Instantiate Ensemble from a list of Model,
and the associated ModelBuilder.

	Parameters

	
	models (List[AbsModel]) – list of Model

	weights (Union[ndarray, List[float], None]) – Optional list of weights, otherwise models will be weighted uniformly

	results (Optional[List[Dict[str, float]]]) – Optional results saved/returned by fold_train_ensemble()

	input_pipe (Optional[Pipeline]) – Optional input pipeline, alternatively call lumin.nn.ensemble.ensemble.Ensemble.add_input_pipe()

	output_pipe (Optional[Pipeline]) – Optional output pipeline, alternatively call lumin.nn.ensemble.ensemble.Ensemble.add_ouput_pipe()

	model_builder (Optional[ModelBuilder]) – Optional ModelBuilder for constructing models from saved weights.

	Return type

	AbsEnsemble

	Returns

	Built Ensemble

	Examples::
	>>> ensemble = Ensemble.from_models(models)
>>>
>>> ensemble = Ensemble.from_models(models, weights)
>>>
>>> ensemble = Ensemble(models, weights, input_pipe, output_pipe, model_builder)

	
classmethod from_results(results, size, model_builder, metric='loss', weighting='reciprocal', higher_metric_better=False, snapshot_args=None, location=PosixPath('train_weights'), verbose=True)

	Instantiate Ensemble from a outputs of fold_train_ensemble().
If cycle models are loaded, then only uniform weighting between models is supported.

	Parameters

	
	results (List[Dict[str, float]]) – results saved/returned by fold_train_ensemble()

	size (int) – number of models to load as ranked by metric

	model_builder (ModelBuilder) – ModelBuilder used for building Model from saved models

	metric (str) – metric name listed in results to use for ranking and weighting trained models

	weighting (str) – ‘reciprocal’ or ‘uniform’ how to weight model predictions during predicition.
‘reciprocal’ = models weighted by 1/metric
‘uniform’ = models treated with equal weighting

	higher_metric_better (bool) – whether metric should be maximised or minimised

	snapshot_args (Optional[Dict[str, Any]]) – Dictionary potentially containing:
‘cycle_losses’: returned/save by fold_train_ensemble() when using an AbsCyclicCallback
‘patience’: patience value that was passed to fold_train_ensemble()
‘n_cycles’: number of cycles to load per model
‘load_cycles_only’: whether to only load cycles, or also the best performing model
‘weighting_pwr’: weight cycles according to (n+1)**weighting_pwr, where n is the number of cycles loaded so far.

Models are loaded youngest to oldest

	location (Path) – Path to save location passed to fold_train_ensemble()

	verbose (bool) – whether to print out information of models loaded

	Return type

	AbsEnsemble

	Returns

	Built Ensemble

	Examples::
	>>> ensemble = Ensemble.from_results(results, 10, model_builder,
... location=Path('train_weights'))
>>>
>>> ensemble = Ensemble.from_results(
... results, 1, model_builder,
... location=Path('train_weights'),
... snapshot_args={'cycle_losses':cycle_losses,
... 'patience':patience,
... 'n_cycles':8,
... 'load_cycles_only':True,
... 'weighting_pwr':0})

	
classmethod from_save(name)

	Instantiate Ensemble from a saved Ensemble

	Parameters

	name (str) – base filename of ensemble

	Return type

	AbsEnsemble

	Returns

	Loaded Ensemble

	Examples::
	>>> ensemble = Ensemble.from_save('weights/ensemble')

	
get_feat_importance(fy, eval_metric=None)

	Call get_ensemble_feat_importance(),
passing this Ensemble and provided arguments

	Parameters

	
	fy (FoldYielder) – FoldYielder interfacing to data on which to evaluate importance

	eval_metric (Optional[EvalMetric]) – Optional EvalMetric to use for quantifying performance

	Return type

	DataFrame

	
load(name)

	Load an instantiated Ensemble with weights and Model from save.

	Arguments;
	name: base name for saved objects

	Examples::
	>>> ensemble.load('weights/ensemble')

	Return type

	None

	
static load_trained_model(model_idx, model_builder, name='train_weights/train_')

	Load trained model from save file of the form {name}{model_idx}.h5

	Arguments
	model_idx: index of model to load
model_builder: ModelBuilder used to build the model
name: base name of file from which to load model

	Return type

	Model

	Returns

	Model loaded from save

	
predict(inputs, n_models=None, pred_name='pred', callbacks=None, verbose=True, bs=None)

	Compatability method for predicting data contained in either a Numpy array or a FoldYielder
Will either pass inputs to lumin.nn.ensemble.ensemble.Ensemble.predict_array() or lumin.nn.ensemble.ensemble.Ensemble.predict_folds().

	Parameters

	
	inputs (Union[ndarray, FoldYielder, List[ndarray]]) – either a FoldYielder interfacing with the input data, or the input data as an array

	n_models (Optional[int]) – number of models to use in predictions as ranked by the metric which was used when constructing the
Ensemble.
By default, entire ensemble is used.

	pred_name (str) – name for new group of predictions if passed a FoldYielder

	callbacks (Optional[List[AbsCallback]]) – list of any callbacks to use during evaluation

	verbose (bool) – whether to print average predicition timings

	bs (Optional[int]) – if not None, will run prediction in batches of specified size to save of memory

	Return type

	Union[None, ndarray]

	Returns

	If passed a Numpy array will return predictions.

	Examples::
	>>> preds = ensemble.predict(input_array)
>>>
>>> ensemble.predict(test_fy)

	
predict_array(arr, n_models=None, parent_bar=None, display=True, callbacks=None, bs=None)

	Apply ensemble to Numpy array and get predictions. If an output pipe has been added to the ensemble, then the predictions will be deprocessed.
Inputs are expected to be preprocessed; i.e. any input pipe added to the ensemble is not used.

	Parameters

	
	arr (Union[ndarray, Tuple[ndarray, ndarray]]) – input data

	n_models (Optional[int]) – number of models to use in predictions as ranked by the metric which was used when constructing the Ensemble.
By default, entire ensemble is used.

	parent_bar (Optional[ConsoleMasterBar]) – not used when calling the method directly

	display (bool) – whether to display a progress bar for model evaluations

	callbacks (Optional[List[AbsCallback]]) – list of any callbacks to use during evaluation

	bs (Optional[int]) – if not None, will run prediction in batches of specified size to save of memory

	Return type

	ndarray

	Returns

	Numpy array of predictions

	Examples::
	>>> preds = ensemble.predict_array(inputs)

	
predict_folds(fy, n_models=None, pred_name='pred', callbacks=None, verbose=True, bs=None)

	Apply ensemble to data accessed by a FoldYielder and save predictions as a new group per fold in the foldfile.
If an output pipe has been added to the ensemble, then the predictions will be deprocessed.
Inputs are expected to be preprocessed; i.e. any input pipe added to the ensemble is not used.
If foldyielder has test-time augmentation, then predictions will be averaged over all augmentated forms of the data.

	Parameters

	
	fy (FoldYielder) – FoldYielder interfacing with the input data

	n_models (Optional[int]) – number of models to use in predictions as ranked by the metric which was used when constructing the Ensemble.
By default, entire ensemble is used.

	pred_name (str) – name for new group of predictions

	callbacks (Optional[List[AbsCallback]]) – list of any callbacks to use during evaluation

	verbose (bool) – whether to print average prediction timings

	bs (Optional[int]) – if not None, will run prediction in batches of specified size to save of memory

	Examples::
	>>> ensemble.predict_array(test_fy, pred_name='pred_tta')

	Return type

	None

	
save(name, feats=None, overwrite=False)

	Save ensemble and associated objects

	Parameters

	
	name (str) – base name for saved objects

	feats (Optional[Any]) – optional list of input features

	overwrite (bool) – if existing objects are found, whether to overwrite them

	Examples::
	>>> ensemble.save('weights/ensemble')
>>>
>>> ensemble.save('weights/ensemble', ['pt','eta','phi'])

	Return type

	None

Module contents

lumin.nn.interpretation package

Submodules

lumin.nn.interpretation.features module

	
lumin.nn.interpretation.features.get_nn_feat_importance(model, fy, eval_metric=None, pb_parent=None, plot=True, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Compute permutation importance of features used by a Model on provided data using either loss or an
EvalMetric to quantify performance.
Returns bootstrapped mean importance from sample constructed by computing importance for each fold in fy.

	Parameters

	
	model (AbsModel) – Model to use to evaluate feature importance

	fy (FoldYielder) – FoldYielder interfacing to data used to train model

	eval_metric (Optional[EvalMetric]) – Optional EvalMetric to use to quantify performance in place of loss

	pb_parent (Optional[ConsoleMasterBar]) – Not used if calling method directly

	plot (bool) – whetehr to plot resulting feature importances

	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances

	settings (PlotSettings) – PlotSettings class to control figure appearance

	Return type

	DataFrame

	Returns

	Pandas DataFrame containing mean importance and associated uncertainty for each feature

	Examples::
	>>> fi = get_nn_feat_importance(model, train_fy)
>>>
>>> fi = get_nn_feat_importance(model, train_fy, savename='feat_import')
>>>
>>> fi = get_nn_feat_importance(model, train_fy,
... eval_metric=AMS(n_total=100000))

	
lumin.nn.interpretation.features.get_ensemble_feat_importance(ensemble, fy, eval_metric=None, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Compute permutation importance of features used by an Ensemble on provided data using either loss or an
EvalMetric to quantify performance.
Returns bootstrapped mean importance from sample constructed by computing importance for each Model in ensemble.

	Parameters

	
	ensemble (AbsEnsemble) – Ensemble to use to evaluate feature importance

	fy (FoldYielder) – FoldYielder interfacing to data used to train models in ensemble

	eval_metric (Optional[EvalMetric]) – Optional EvalMetric to use to quantify performance in place of loss

	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances

	settings (PlotSettings) – PlotSettings class to control figure appearance

	Return type

	DataFrame

	Returns

	Pandas DataFrame containing mean importance and associated uncertainty for each feature

	Examples::
	>>> fi = get_ensemble_feat_importance(ensemble, train_fy)
>>>
>>> fi = get_ensemble_feat_importance(ensemble, train_fy
... savename='feat_import')
>>>
>>> fi = get_ensemble_feat_importance(ensemble, train_fy,
... eval_metric=AMS(n_total=100000))

Module contents

lumin.nn.losses package

Submodules

lumin.nn.losses.basic_weighted module

	
class lumin.nn.losses.basic_weighted.WeightedMSE(weight=None)

	Bases: torch.nn.modules.loss.MSELoss

Class for computing Mean Squared-Error loss with optional weights per prediction.
For compatability with using basic PyTorch losses, weights are passed during initialisation rather than when computing the loss.

	Parameters

	weight (Optional[Tensor]) – sample weights as PyTorch Tensor, to be used with data to be passed when computing the loss

	Examples::
	>>> loss = WeightedMSE()
>>>
>>> loss = WeightedMSE(weights)

	
forward(input, target)

	Evaluate loss for given predictions

	Parameters

	
	input (Tensor) – prediction tensor

	target (Tensor) – target tensor

	Return type

	Tensor

	Returns

	(weighted) loss

	
class lumin.nn.losses.basic_weighted.WeightedMAE(weight=None)

	Bases: torch.nn.modules.loss.L1Loss

Class for computing Mean Absolute-Error loss with optional weights per prediction.
For compatability with using basic PyTorch losses, weights are passed during initialisation rather than when computing the loss.

	Parameters

	weight (Optional[Tensor]) – sample weights as PyTorch Tensor, to be used with data to be passed when computing the loss

	Examples::
	>>> loss = WeightedMAE()
>>>
>>> loss = WeightedMAE(weights)

	
forward(input, target)

	Evaluate loss for given predictions

	Parameters

	
	input (Tensor) – prediction tensor

	target (Tensor) – target tensor

	Return type

	Tensor

	Returns

	(weighted) loss

	
class lumin.nn.losses.basic_weighted.WeightedCCE(weight=None)

	Bases: torch.nn.modules.loss.NLLLoss

Class for computing Categorical Cross-Entropy loss with optional weights per prediction.
For compatability with using basic PyTorch losses, weights are passed during initialisation rather than when computing the loss.

	Parameters

	weight (Optional[Tensor]) – sample weights as PyTorch Tensor, to be used with data to be passed when computing the loss

	Examples::
	>>> loss = WeightedCCE()
>>>
>>> loss = WeightedCCE(weights)

	
forward(input, target)

	Evaluate loss for given predictions

	Parameters

	
	input (Tensor) – prediction tensor

	target (Tensor) – target tensor

	Return type

	Tensor

	Returns

	(weighted) loss

lumin.nn.losses.hep_losses module

	
class lumin.nn.losses.hep_losses.SignificanceLoss(weight, sig_wgt=<class 'float'>, bkg_wgt=<class 'float'>, func=typing.Callable[[torch.Tensor, torch.Tensor], torch.Tensor])

	Bases: torch.nn.modules.module.Module

General class for implementing significance-based loss functions, e.g. Asimov Loss (https://arxiv.org/abs/1806.00322).
For compatability with using basic PyTorch losses, event weights are passed during initialisation rather than when computing the loss.

	Parameters

	
	weight (Tensor) – sample weights as PyTorch Tensor, to be used with data to be passed when computing the loss

	sig_wgt – total weight of signal events

	bkg_wgt – total weight of background events

	func – callable which returns a float based on signal and background weights

	Examples::
	>>> loss = SignificanceLoss(weight, sig_weight=sig_weight,
... bkg_weight=bkg_weight, func=calc_ams_torch)
>>>
>>> loss = SignificanceLoss(weight, sig_weight=sig_weight,
... bkg_weight=bkg_weight,
... func=partial(calc_ams_torch, br=10))

	
forward(input, target)

	Evaluate loss for given predictions

	Parameters

	
	input (Tensor) – prediction tensor

	target (Tensor) – target tensor

	Return type

	Tensor

	Returns

	(weighted) loss

Module contents

lumin.nn.metrics package

Submodules

lumin.nn.metrics.class_eval module

	
class lumin.nn.metrics.class_eval.AMS(n_total, wgt_name, targ_name='targets', br=0, syst_unc_b=0, use_quick_scan=True)

	Bases: lumin.nn.metrics.eval_metric.EvalMetric

Class to compute maximum Approximate Median Significance (https://arxiv.org/abs/1007.1727) using classifier which directly predicts the class of data in a
binary classifiaction problem.
AMS is computed on a single fold of data provided by a FoldYielder and automatically reweights data by event
multiplicity to account missing weights.

	Parameters

	
	n_total (int) – total number of events in entire data set

	wgt_name (str) – name of weight group in fold file to use. N.B. if you have reweighted to balance classes, be sure to use the un-reweighted weights.

	targ_name (str) – name of target group in fold file

	br (float) – constant bias offset for background yield

	syst_unc_b (float) – fractional systematic uncertainty on background yield

	use_quick_scan (bool) – whether to optimise AMS by the ams_scan_quick() method (fast but suffers floating point precision)
if False use ams_scan_slow() (slower but more accurate)

	Examples::
	>>> ams_metric = AMS(n_total=250000, br=10, wgt_name='gen_orig_weight')
>>>
>>> ams_metric = AMS(n_total=250000, syst_unc_b=0.1,
... wgt_name='gen_orig_weight', use_quick_scan=False)

	
evaluate(fy, idx, y_pred)

	Compute maximum AMS on fold using provided predictions.

	Parameters

	
	fy (FoldYielder) – FoldYielder interfacing to data

	idx (int) – fold index corresponding to fold for which y_pred was computed

	y_pred (ndarray) – predictions for fold

	Return type

	float

	Returns

	Maximum AMS computed on reweighted data from fold

	Examples::
	>>> ams = ams_metric.evaluate(train_fy, val_id, val_preds)

	
class lumin.nn.metrics.class_eval.MultiAMS(n_total, wgt_name, targ_name, zero_preds, one_preds, br=0, syst_unc_b=0, use_quick_scan=True)

	Bases: lumin.nn.metrics.class_eval.AMS

Class to compute maximum Approximate Median Significance (https://arxiv.org/abs/1007.1727) using classifier which predicts the class of data in a multiclass
classifiaction problem which can be reduced to a binary classification problem
AMS is computed on a single fold of data provided by a FoldYielder and automatically reweights data by event
multiplicity to account missing weights.

	Parameters

	
	n_total (int) – total number of events in entire data set

	wgt_name (str) – name of weight group in fold file to use. N.B. if you have reweighted to balance classes, be sure to use the un-reweighted weights.

	targ_name (str) – name of target group in fold file which indicates whether the event is signal or background

	zero_preds (List[str]) – list of predicted classes which correspond to class 0 in the form pred_[i], where i is a NN output index

	one_preds (List[str]) – list of predicted classes which correspond to class 1 in the form pred_[i], where i is a NN output index

	br (float) – constant bias offset for background yield

	syst_unc_b (float) – fractional systematic uncertainty on background yield

	use_quick_scan (bool) – whether to optimise AMS by the ams_scan_quick() method (fast but suffers floating point precision)
if False use ams_scan_slow() (slower but more accurate)

	Examples::
	>>> ams_metric = MultiAMS(n_total=250000, br=10, targ_name='gen_target',
... wgt_name='gen_orig_weight',
... zero_preds=['pred_0', 'pred_1', 'pred_2'],
... one_preds=['pred_3'])
>>>
>>> ams_metric = MultiAMS(n_total=250000, syst_unc_b=0.1,
... targ_name='gen_target',
... wgt_name='gen_orig_weight',
... use_quick_scan=False,
... zero_preds=['pred_0', 'pred_1', 'pred_2'],
... one_preds=['pred_3'])

	
evaluate(fy, idx, y_pred)

	Compute maximum AMS on fold using provided predictions.

	Parameters

	
	fy (FoldYielder) – FoldYielder interfacing to data

	idx (int) – fold index corresponding to fold for which y_pred was computed

	y_pred (ndarray) – predictions for fold

	Return type

	float

	Returns

	Maximum AMS computed on reweighted data from fold

	Examples::
	>>> ams = ams_metric.evaluate(train_fy, val_id, val_preds)

	
class lumin.nn.metrics.class_eval.BinaryAccuracy(threshold=0.5, targ_name='targets', wgt_name=None)

	Bases: lumin.nn.metrics.eval_metric.EvalMetric

Computes and returns the accuracy of a single-output model for binary classification tasks.

	Parameters

	
	threshold (float) – minimum value of model prediction that will be considered a prediction of class 1. Values below this threshold will be considered predictions
of class 0. Default = 0.5.

	wgt_name (Optional[str]) – name of weight group in fold file to use.

	targ_name (str) – name of target group in fold file which indicates whether the event is class 0 or 1

	Examples::
	>>> acc_metric = BinaryAccuracy()
>>>
>>> acc_metric = BinaryAccuracy(threshold=0.8, wgt_name='weights')

	
evaluate(fy, idx, y_pred)

	Computes the (weighted) accuracy for a set of targets and predictions for a given threshold.

	Parameters

	
	fy (FoldYielder) – FoldYielder interfacing to data

	idx (int) – fold index corresponding to fold for which y_pred was computed

	y_pred (ndarray) – predictions for fold

	Return type

	float

	Returns

	The (weighted) accuracy for the specified threshold

	Examples::
	>>> acc = acc_metric.evaluate(train_fy, val_id, val_preds)

	
class lumin.nn.metrics.class_eval.RocAucScore(average='macro', max_fpr=None, multi_class='raise', targ_name='targets', wgt_name=None)

	Bases: lumin.nn.metrics.eval_metric.EvalMetric

Computes and returns the area under the Receiver Operator Characteristic curve (ROC AUC) of a classifier model.

	Parameters

	
	average (Optional[str]) – As per scikit-learn. {‘micro’, ‘macro’, ‘samples’, ‘weighted’} or None, default=’macro’
If None, the scores for each class are returned. Otherwise,
this determines the type of averaging performed on the data:
Note: multiclass ROC AUC currently only handles the ‘macro’ and
‘weighted’ averages.

	'micro':
	Calculate metrics globally by considering each element of the label
indicator matrix as a label.

	'macro':
	Calculate metrics for each label, and find their unweighted
mean. This does not take label imbalance into account.

	'weighted':
	Calculate metrics for each label, and find their average, weighted
by support (the number of true instances for each label).

	'samples':
	Calculate metrics for each instance, and find their average.

Will be ignored when y_true is binary.

	max_fpr (Optional[float]) – As per scikit-learn. float > 0 and <= 1, default=None
If not None, the standardized partial AUC over the range
[0, max_fpr] is returned. For the multiclass case, max_fpr,
should be either equal to None or 1.0 as AUC ROC partial
computation currently is not supported for multiclass.

	multi_class (str) – As per scikit-learn. {‘raise’, ‘ovr’, ‘ovo’}, default=’raise’
Multiclass only. Determines the type of configuration to use. The
default value raises an error, so either 'ovr' or 'ovo' must be
passed explicitly.

	'ovr':
	Computes the AUC of each class against the rest. This
treats the multiclass case in the same way as the multilabel case.
Sensitive to class imbalance even when average == 'macro',
because class imbalance affects the composition of each of the
‘rest’ groupings.

	'ovo':
	Computes the average AUC of all possible pairwise combinations of
classes. Insensitive to class imbalance when
average == 'macro'.

	wgt_name (Optional[str]) – name of weight group in fold file to use.

	targ_name (str) – name of target group in fold file which indicates whether the event is class 0 or 1

	Examples::
	>>> auc_metric = RocAucScore()
>>>
>>> auc_metric = RocAucScore(wgt_name='weights')
>>>
>>> auc_metric = RocAucScore(max_fpr=0.2, wgt_name='weights')
>>>
>>> auc_metric = RocAucScore(multi_class='ovo', wgt_name='weights')

	
evaluate(fy, idx, y_pred)

	Computes the (weighted) (averaged) ROC AUC for a set of targets and predictions.

	Parameters

	
	fy (FoldYielder) – FoldYielder interfacing to data

	idx (int) – fold index corresponding to fold for which y_pred was computed

	y_pred (ndarray) – predictions for fold

	Return type

	float

	Returns

	The (weighted) (averaged) ROC AUC for the specified threshold

	Examples::
	>>> auc = auc_metric.evaluate(train_fy, val_id, val_preds)

lumin.nn.metrics.eval_metric module

	
class lumin.nn.metrics.eval_metric.EvalMetric(targ_name='targets', wgt_name=None)

	Bases: abc.ABC

Abstract class for evaluating performance of a model using some metric

	Parameters

	
	targ_name (str) – name of group in fold file containing regression targets

	wgt_name (Optional[str]) – name of group in fold file containing datapoint weights

	
abstract evaluate(fy, idx, y_pred)

	Evaluate the required metric for a given fold and set of predictions

	Parameters

	
	fy (FoldYielder) – FoldYielder interfacing to data

	idx (int) – fold index corresponding to fold for which y_pred was computed

	y_pred (ndarray) – predictions for fold

	Return type

	float

	Returns

	metric value

	
get_df(fy, idx, y_pred)

	Returns a DataFrame for the given fold containing targets, weights, and predictions

	Parameters

	
	fy (FoldYielder) – FoldYielder interfacing to data

	idx (int) – fold index corresponding to fold for which y_pred was computed

	y_pred (ndarray) – predictions for fold

	Return type

	DataFrame

	Returns

	DataFrame for the given fold containing targets, weights, and predictions

lumin.nn.metrics.reg_eval module

	
class lumin.nn.metrics.reg_eval.RegPull(return_mean, use_bootstrap=False, use_weights=True, use_pull=True, targ_name='targets', wgt_name=None)

	Bases: lumin.nn.metrics.eval_metric.EvalMetric

Compute mean or standard deviation of delta or pull of some feature which is being directly regressed to.
Optionally, use bootstrap resampling on validation data.

	Parameters

	
	return_mean (bool) – whether to return the mean or the standard deviation

	use_bootstrap (bool) – whether to bootstrap resamples validation fold when computing statisitic

	use_weights (bool) – whether to actually use weights if wgt_name is set

	use_pull (bool) – whether to return the pull (differences / targets) or delta (differences)

	targ_name (str) – name of group in fold file containing regression targets

	wgt_name (Optional[str]) – name of group in fold file containing datapoint weights

	Examples::
	>>> mean_pull = RegPull(return_mean=True, use_bootstrap=True,
... use_pull=True)
>>>
>>> std_delta = RegPull(return_mean=False, use_bootstrap=True,
... use_pull=False)
>>>
>>> mean_pull = RegPull(return_mean=True, use_bootstrap=False,
... use_pull=True, wgt_name='weights')

	
evaluate(fy, idx, y_pred)

	Compute statisitic on fold using provided predictions.

	Parameters

	
	fy (FoldYielder) – FoldYielder interfacing to data

	idx (int) – fold index corresponding to fold for which y_pred was computed

	y_pred (ndarray) – predictions for fold

	Return type

	float

	Returns

	Statistic set in initialisation computed on the chsoen fold

	Examples::
	>>> mean = mean_pull.evaluate(train_fy, val_id, val_preds)

	
class lumin.nn.metrics.reg_eval.RegAsProxyPull(proxy_func, return_mean, use_bootstrap=False, use_weights=True, use_pull=True, targ_name='targets', wgt_name=None)

	Bases: lumin.nn.metrics.reg_eval.RegPull

Compute mean or standard deviation of delta or pull of some feature which is being indirectly regressed to via a proxy function.
Optionally, use bootstrap resampling on validation data.

	Parameters

	
	proxy_func (Callable[[DataFrame], None]) – function which acts on regression predictions and adds pred and gen_target columns to the Pandas DataFrame it is passed which contains
prediction columns pred_{i}

	return_mean (bool) – whether to return the mean or the standard deviation

	use_bootstrap (bool) – whether to bootstrap resamples validation fold when computing statisitic

	use_weights (bool) – whether to actually use weights if wgt_name is set

	use_pull (bool) – whether to return the pull (differences / targets) or delta (differences)

	targ_name (str) – name of group in fold file containing regression targets

	wgt_name (Optional[str]) – name of group in fold file containing datapoint weights

	Examples::
	>>> def reg_proxy_func(df):
>>> df['pred'] = calc_pair_mass(df, (1.77682, 1.77682),
... {targ[targ.find('_t')+3:]:
... f'pred_{i}' for i, targ
... in enumerate(targ_feats)})
>>> df['gen_target'] = 125
>>>
>>> std_delta = RegAsProxyPull(proxy_func=reg_proxy_func,
... return_mean=False, use_pull=False)

	
evaluate(fy, idx, y_pred)

	Compute statisitic on fold using provided predictions.

	Parameters

	
	fy (FoldYielder) – FoldYielder interfacing to data

	idx (int) – fold index corresponding to fold for which y_pred was computed

	y_pred (ndarray) – predictions for fold

	Return type

	float

	Returns

	Statistic set in initialisation computed on the chsoen fold

	Examples::
	>>> mean = mean_pull.evaluate(train_fy, val_id, val_preds)

Module contents

lumin.nn.models package

Subpackages

	lumin.nn.models.blocks package

	lumin.nn.models.layers package

Submodules

lumin.nn.models.helpers module

	
class lumin.nn.models.helpers.CatEmbedder(cat_names, cat_szs, emb_szs=None, max_emb_sz=50, emb_load_path=None)

	Bases: object

Helper class for embedding categorical features. Designed to be passed to ModelBuilder.
Note that the classmethod from_fy() may be used to instantiate an CatEmbedder
from a FoldYielder.

	Parameters

	
	cat_names (List[str]) – list of names of catgorical features in order in which they will be passed as inputs columns

	cat_szs (List[int]) – list of cardinalities (number of unique elements) for each feature

	emb_szs (Optional[List[int]]) – Optional list of embedding sizes for each feature. If None, will use min(max_emb_sz, (1+sz)//2)

	max_emb_sz (int) – Maximum size of embedding if emb_szs is None

	emb_load_path (Union[Path, str, None]) – if not None, will cause ModelBuilder to attempt to load pretrained embeddings from path

	Examples::
	>>> cat_embedder = CatEmbedder(cat_names=['n_jets', 'channel'],
 cat_szs=[5, 3])
>>>
>>> cat_embedder = CatEmbedder(cat_names=['n_jets', 'channel'],
 cat_szs=[5, 3], emb_szs=[2, 2])
>>>
>>> cat_embedder = CatEmbedder(cat_names=['n_jets', 'channel'],
 cat_szs=[5, 3], emb_szs=[2, 2],
 emb_load_path=Path('weights'))

	
calc_emb_szs()

	Method used to set sizes of embeddings for each categorical feature when no embedding sizes are explicitly passed
Uses rule of thumb of min(50, (1+cardinality)/2)

	Return type

	None

	
classmethod from_fy(fy, emb_szs=None, max_emb_sz=50, emb_load_path=None)

	Instantiate an CatEmbedder from a FoldYielder, i.e. avoid having to pass
cat_names and cat_szs.

	Parameters

	
	fy (FoldYielder) – FoldYielder with training data

	emb_szs (Optional[List[int]]) – Optional list of embedding sizes for each feature. If None, will use min(max_emb_sz, (1+sz)//2)

	max_emb_sz (int) – Maximum size of embedding if emb_szs is None

	emb_load_path (Union[Path, str, None]) – if not None, will cause ModelBuilder to attempt to load pretrained embeddings from path

	Returns

	CatEmbedder

	Examples::
	>>> cat_embedder = CatEmbedder.from_fy(train_fy)
>>>
>>> cat_embedder = CatEmbedder.from_fy(train_fy, emb_szs=[2, 2])
>>>
>>> cat_embedder = CatEmbedder.from_fy(
 train_fy, emb_szs=[2, 2],
 emb_load_path=Path('weights'))

lumin.nn.models.initialisations module

	
lumin.nn.models.initialisations.lookup_normal_init(act, fan_in=None, fan_out=None)

	Lookup for weight initialisation using Normal distributions

	Parameters

	
	act (str) – string representation of activation function

	fan_in (Optional[int]) – number of inputs to neuron

	fan_out (Optional[int]) – number of outputs from neuron

	Return type

	Callable[[Tensor], None]

	Returns

	Callable to initialise weight tensor

	
lumin.nn.models.initialisations.lookup_uniform_init(act, fan_in=None, fan_out=None)

	Lookup weight initialisation using Uniform distributions

	Parameters

	
	act (str) – string representation of activation function

	fan_in (Optional[int]) – number of inputs to neuron

	fan_out (Optional[int]) – number of outputs from neuron

	Return type

	Callable[[Tensor], None]

	Returns

	Callable to initialise weight tensor

lumin.nn.models.model module

	
class lumin.nn.models.model.Model(model_builder=None)

	Bases: lumin.nn.models.abs_model.AbsModel

Wrapper class to handle training and inference of NNs created via a ModelBuilder.
Note that saved models can be instantiated direcly via from_save() classmethod.

	Parameters

	model_builder (Optional[ModelBuilder]) – ModelBuilder which will construct the network, loss, and optimiser

	Examples::
	>>> model = Model(model_builder)

	
evaluate(inputs, targets, weights=None, callbacks=None, mask_inputs=True)

	Compute loss on provided data.

	Parameters

	
	inputs (Union[Tensor, ndarray, Tuple[Tensor, Tensor], Tuple[ndarray, ndarray]]) – input data

	targets (Union[Tensor, ndarray]) – targets

	weights (Union[Tensor, ndarray, None]) – Optional weights

	callbacks (Optional[List[AbsCallback]]) – list of any callbacks to use during evaluation

	mask_inputs (bool) – whether to apply input mask if one has been set

	Return type

	float

	Returns

	(weighted) loss of model predictions on provided data

	
evaluate_from_by(by, callbacks=None)

	Compute loss on provided data in batches provided by a :class:~lumin.nn.data.batch_yielder.BatchYielder.

	Parameters

	
	by (BatchYielder) – :class:~lumin.nn.data.batch_yielder.BatchYielder with data

	callbacks (Optional[List[AbsCallback]]) – list of any callbacks to use during evaluation

	Return type

	float

	Returns

	(weighted) loss of model predictions on provided data

	
export2onnx(name, bs=1)

	Export network to ONNX format.
Note that ONNX expects a fixed batch size (bs) which is the number of datapoints your wish to pass through the model concurrently.

	Parameters

	
	name (str) – filename for exported file

	bs (int) – batch size for exported models

	Return type

	None

	
export2tfpb(name, bs=1)

	Export network to Tensorflow ProtocolBuffer format, via ONNX.
Note that ONNX expects a fixed batch size (bs) which is the number of datapoints your wish to pass through the model concurrently.

	Parameters

	
	name (str) – filename for exported file

	bs (int) – batch size for exported models

	Return type

	None

	
fit(batch_yielder, callbacks=None, mask_inputs=True)

	Fit network for one complete iteration of a BatchYielder, i.e. one (sub-)epoch

	Parameters

	
	batch_yielder (BatchYielder) – BatchYielder providing training data in form of tuple of inputs, targtes, and weights as tensors on device

	callbacks (Optional[List[AbsCallback]]) – list of AbsCallback to be used during training

	mask_inputs (bool) – whether to apply input mask if one has been set

	Return type

	float

	Returns

	Loss on training data averaged across all minibatches

	
classmethod from_save(name, model_builder)

	Instantiated a Model and load saved state from file.

	Parameters

	
	name (str) – name of file containing saved state

	model_builder (ModelBuilder) – ModelBuilder which was used to construct the network

	Return type

	AbsModel

	Returns

	Instantiated Model with network weights, optimiser state, and input mask loaded from saved state

	Examples::
	>>> model = Model.from_save('weights/model.h5', model_builder)

	
get_feat_importance(fy, eval_metric=None)

	Call get_nn_feat_importance() passing this Model and provided arguments

	Parameters

	
	fy (FoldYielder) – FoldYielder interfacing to data on which to evaluate importance

	eval_metric (Optional[EvalMetric]) – Optional EvalMetric to use for quantifying performance

	Return type

	DataFrame

	
get_lr()

	Get learning rate of optimiser

	Return type

	float

	Returns

	learning rate of optimiser

	
get_mom()

	Get momentum/beta_1 of optimiser

	Return type

	float

	Returns

	momentum/beta_1 of optimiser

	
get_out_size()

	Get number of outputs of model

	Return type

	int

	Returns

	Number of outputs of model

	
get_param_count(trainable=True)

	Return number of parameters in model.

	Parameters

	trainable (bool) – if true (default) only count trainable parameters

	Return type

	int

	Returns

	NUmber of (trainable) parameters in model

	
get_weights()

	Get state_dict of weights for network

	Return type

	OrderedDict

	Returns

	state_dict of weights for network

	
load(name, model_builder=None)

	Load model, optimiser, and input mask states from file

	Parameters

	
	name (str) – name of save file

	model_builder (Optional[ModelBuilder]) – if Model was not initialised with a ModelBuilder, you will need to pass one here

	Return type

	None

	
predict(inputs, as_np=True, pred_name='pred', callbacks=None, verbose=True, bs=None)

	Apply model to inputed data and compute predictions.
A compatability method to call predict_array() or meth:~lumin.nn.models.model.Model.predict_folds, depending on input type.

	Parameters

	
	inputs (Union[ndarray, DataFrame, Tensor, FoldYielder]) – input data as Numpy array, Pandas DataFrame, or tensor on device, or FoldYielder interfacing to data

	as_np (bool) – whether to return predictions as Numpy array (otherwise tensor) if inputs are a Numpy array, Pandas DataFrame, or tensor

	pred_name (str) – name of group to which to save predictions if inputs are a FoldYielder

	callbacks (Optional[List[AbsCallback]]) – list of any callbacks to use during evaluation

	verbose (bool) – whether to print average prediction timings

	bs (Optional[int]) – if not None, will run prediction in batches of specified size to save of memory

	Return type

	Union[ndarray, Tensor, None]

	Returns

	if inputs are a Numpy array, Pandas DataFrame, or tensor, will return predicitions as either array or tensor

	
predict_array(inputs, as_np=True, mask_inputs=True, callbacks=None, bs=None)

	Pass inputs through network and obtain predictions.

	Parameters

	
	inputs (Union[ndarray, DataFrame, Tensor, Tuple]) – input data as Numpy array, Pandas DataFrame, or tensor on device

	as_np (bool) – whether to return predictions as Numpy array (otherwise tensor)

	mask_inputs (bool) – whether to apply input mask if one has been set

	callbacks (Optional[List[AbsCallback]]) – list of any callbacks to use during evaluation

	bs (Optional[int]) – if not None, will run prediction in batches of specified size to save of memory

	Return type

	Union[ndarray, Tensor]

	Returns

	Model prediction(s) per datapoint

	
predict_folds(fy, pred_name='pred', callbacks=None, verbose=True, bs=None)

	Apply model to all dataaccessed by a FoldYielder and save predictions as new group in fold file

	Parameters

	
	fy (FoldYielder) – FoldYielder interfacing to data

	pred_name (str) – name of group to which to save predictions

	callbacks (Optional[List[AbsCallback]]) – list of any callbacks to use during evaluation

	verbose (bool) – whether to print average prediction timings

	bs (Optional[int]) – if not None, will run prediction in batches of specified size to save of memory

	Return type

	None

	
save(name)

	Save model, optimiser, and input mask states to file

	Parameters

	name (str) – name of save file

	Return type

	None

	
set_input_mask(mask)

	Mask input columns by only using input columns whose indeces are listed in mask

	Parameters

	mask (ndarray) – array of column indeces to use from all input columns

	Return type

	None

	
set_lr(lr)

	set learning rate of optimiser

	Parameters

	lr (float) – learning rate of optimiser

	Return type

	None

	
set_mom(mom)

	Set momentum/beta_1 of optimiser

	Parameters

	mom (float) – momentum/beta_1 of optimiser

	Return type

	None

	
set_weights(weights)

	Set state_dict of weights for network

	Parameters

	weights (OrderedDict) – state_dict of weights for network

	Return type

	None

lumin.nn.models.model_builder module

	
class lumin.nn.models.model_builder.ModelBuilder(objective, n_out, cont_feats=None, model_args=None, opt_args=None, cat_embedder=None, cont_subsample_rate=None, guaranteed_feats=None, loss='auto', head=<class 'lumin.nn.models.blocks.head.CatEmbHead'>, body=<class 'lumin.nn.models.blocks.body.FullyConnected'>, tail=<class 'lumin.nn.models.blocks.tail.ClassRegMulti'>, lookup_init=<function lookup_normal_init>, lookup_act=<function lookup_act>, pretrain_file=None, freeze_head=False, freeze_body=False, freeze_tail=False)

	Bases: object

Class to build models to specified architecture on demand along with an optimiser.

	Parameters

	
	objective (str) – string representation of network objective, i.e. ‘classification’, ‘regression’, ‘multiclass’

	n_out (int) – number of outputs required

	cont_feats (Optional[List[str]]) – list of names of continuous input features

	model_args (Optional[Dict[str, Dict[str, Any]]]) – dictionary of dictionaries of keyword arguments to pass to head, body, and tail to control architrcture

	opt_args (Optional[Dict[str, Any]]) – dictionary of arguments to pass to optimiser. Missing kargs will be filled with default values.
Currently, only ADAM (default), and SGD are available.

	cat_embedder (Optional[CatEmbedder]) – CatEmbedder for embedding categorical inputs

	cont_subsample_rate (Optional[float]) – if between in range (0, 1), will randomly select a fraction of continuous features (rounded upwards) to use as inputs

	guaranteed_feats (Optional[List[str]]) – if subsampling features, will always include the features listed here, which count towards the subsample fraction

	loss (Any) – either and uninstantiated loss class, or leave as ‘auto’ to select loss according to objective

	head (Callable[[Any], AbsHead]) – uninstantiated class which can receive input data and upscale it to model width

	body (Callable[[Any], AbsBody]) – uninstantiated class which implements the main bulk of the model’s hidden layers

	tail (Callable[[Any], AbsTail]) – uninstantiated class which scales the body to the required number of outputs and implements any final activation function and output scaling

	lookup_init (Callable[[str, Optional[int], Optional[int]], Callable[[Tensor], None]]) – function taking choice of activation function, number of inputs, and number of outputs an returning a function to initialise layer weights.

	lookup_act (Callable[[str], Module]) – function taking choice of activation function and returning an activation function layer

	pretrain_file (Optional[str]) – if set, will load saved parameters for entire network from saved model

	freeze_head (bool) – whether to start with the head parameters set to untrainable

	freeze_body (bool) – whether to start with the body parameters set to untrainable

	Examples::
	>>> model_builder = ModelBuilder(objective='classifier',
>>> cont_feats=cont_feats, n_out=1,
>>> model_args={'body':{'depth':4,
>>> 'width':100}})
>>>
>>> min_targs = np.min(targets, axis=0).reshape(targets.shape[1],1)
>>> max_targs = np.max(targets, axis=0).reshape(targets.shape[1],1)
>>> min_targs[min_targs > 0] *=0.8
>>> min_targs[min_targs < 0] *=1.2
>>> max_targs[max_targs > 0] *=1.2
>>> max_targs[max_targs < 0] *=0.8
>>> y_range = np.hstack((min_targs, max_targs))
>>> model_builder = ModelBuilder(
>>> objective='regression', cont_feats=cont_feats, n_out=6,
>>> cat_embedder=CatEmbedder.from_fy(train_fy),
>>> model_args={'body':{'depth':4, 'width':100},
>>> 'tail':{y_range=y_range})
>>>
>>> model_builder = ModelBuilder(objective='multiclassifier',
>>> cont_feats=cont_feats, n_out=5,
>>> model_args={'body':{'width':100,
>>> 'depth':6,
>>> 'do':0.1,
>>> 'res':True}})
>>>
>>> model_builder = ModelBuilder(objective='classifier',
>>> cont_feats=cont_feats, n_out=1,
>>> model_args={'body':{'depth':4,
>>> 'width':100}},
>>> opt_args={'opt':'sgd',
>>> 'momentum':0.8,
>>> 'weight_decay':1e-5},
>>> loss=partial(SignificanceLoss,
>>> sig_weight=sig_weight,
>>> bkg_weight=bkg_weight,
>>> func=calc_ams_torch))

	
build_model()

	Construct entire network module

	Return type

	Module

	Returns

	Instantiated nn.Module

	
classmethod from_model_builder(model_builder, pretrain_file=None, freeze_head=False, freeze_body=False, freeze_tail=False, loss=None, opt_args=None)

	Instantiate a ModelBuilder from an exisitng ModelBuilder, but with options to adjust loss, optimiser, pretraining, and module freezing

	Parameters

	
	model_builder – existing ModelBuilder or filename for a pickled ModelBuilder

	pretrain_file (Optional[str]) – if set, will load saved parameters for entire network from saved model

	freeze_head (bool) – whether to start with the head parameters set to untrainable

	freeze_body (bool) – whether to start with the body parameters set to untrainable

	freeze_tail (bool) – whether to start with the tail parameters set to untrainable

	loss (Optional[Any]) – either and uninstantiated loss class, or leave as ‘auto’ to select loss according to objective

	opt_args (Optional[Dict[str, Any]]) – dictionary of arguments to pass to optimiser. Missing kargs will be filled with default values. Choice of optimiser (‘opt’) keyword can
either be set by passing the string name (e.g. ‘adam’), but only ADAM and SGD are available this way, or by passing an uninstantiated
optimiser (e.g. torch.optim.Adam). If no optimser is set, then it defaults to ADAM. Additional keyword arguments can be set, and these will be
passed tot he optimiser during instantiation

	Returns

	Instantiated ModelBuilder

	Examples::
	>>> new_model_builder = ModelBuilder.from_model_builder(
>>> ModelBuidler)
>>>
>>> new_model_builder = ModelBuilder.from_model_builder(
>>> ModelBuidler, loss=partial(
>>> SignificanceLoss, sig_weight=sig_weight,
>>> bkg_weight=bkg_weight, func=calc_ams_torch))
>>>
>>> new_model_builder = ModelBuilder.from_model_builder(
>>> 'weights/model_builder.pkl',
>>> opt_args={'opt':'sgd', 'momentum':0.8, 'weight_decay':1e-5})
>>>
>>> new_model_builder = ModelBuilder.from_model_builder(
>>> 'weights/model_builder.pkl',
>>> opt_args={'opt':torch.optim.Adam,
... 'momentum':0.8,
... 'weight_decay':1e-5})

	
get_body(n_in, feat_map)

	Construct body module

	Return type

	AbsBody

	Returns

	Instantiated body nn.Module

	
get_head()

	Construct head module

	Return type

	AbsHead

	Returns

	Instantiated head nn.Module

	
get_model()

	Construct model, loss, and optimiser, optionally loading pretrained weights

	Return type

	Tuple[Module, Optimizer, Any]

	Returns

	Instantiated network, optimiser linked to model parameters, and uninstantiated loss

	
get_out_size()

	Get number of outputs of model

	Return type

	int

	Returns

	number of outputs of network

	
get_tail(n_in)

	Construct tail module

	Return type

	Module

	Returns

	Instantiated tail nn.Module

	
load_pretrained(model)

	Load model weights from pretrained file

	Parameters

	model (Module) – instantiated model, i.e. return of build_model()

	Returns

	model with weights loaded

	
set_lr(lr)

	Set learning rate for all model parameters

	Parameters

	lr (float) – learning rate

	Return type

	None

Module contents

lumin.nn.models.blocks package

Submodules

lumin.nn.models.blocks.body module

	
class lumin.nn.models.blocks.body.FullyConnected(n_in, feat_map, depth, width, do=0, bn=False, act='relu', res=False, dense=False, growth_rate=0, lookup_init=<function lookup_normal_init>, lookup_act=<function lookup_act>, freeze=False)

	Bases: lumin.nn.models.blocks.body.AbsBody

Fully connected set of hidden layers. Designed to be passed as a ‘body’ to ModelBuilder.
Supports batch normalisation and dropout.
Order is dense->activation->BN->DO, except when res is true in which case the BN is applied after the addition.
Can optionaly have skip connections between each layer (res=true).
Alternatively can concatinate layers (dense=true)
growth_rate parameter can be used to adjust the width of layers according to width+(width*(depth-1)*growth_rate)

	Parameters

	
	n_in (int) – number of inputs to the block

	feat_map (Dict[str, List[int]]) – dictionary mapping input features to the model to outputs of head block

	depth (int) – number of hidden layers. If res==True and depth is even, depth will be increased by one.

	width (int) – base width of each hidden layer

	do (float) – if not None will add dropout layers with dropout rates do

	bn (bool) – whether to use batch normalisation

	act (str) – string representation of argument to pass to lookup_act

	res (bool) – whether to add an additative skip connection every two dense layers. Mutually exclusive with dense.

	dense (bool) – whether to perform layer-wise concatinations after every layer. Mutually exclusion with res.

	growth_rate (int) – rate at which width of dense layers should increase with depth beyond the initial layer. Ignored if res=True. Can be negative.

	lookup_init (Callable[[str, Optional[int], Optional[int]], Callable[[Tensor], None]]) – function taking choice of activation function, number of inputs, and number of outputs an returning a function to initialise layer weights.

	lookup_act (Callable[[str], Any]) – function taking choice of activation function and returning an activation function layer

	freeze (bool) – whether to start with module parameters set to untrainable

	Examples::
	>>> body = FullyConnected(n_in=32, feat_map=head.feat_map, depth=4,
... width=100, act='relu')
>>>
>>> body = FullyConnected(n_in=32, feat_map=head.feat_map, depth=4,
... width=200, act='relu', growth_rate=-0.3)
>>>
>>> body = FullyConnected(n_in=32, feat_map=head.feat_map, depth=4,
... width=100, act='swish', do=0.1, res=True)
>>>
>>> body = FullyConnected(n_in=32, feat_map=head.feat_map, depth=6,
... width=32, act='selu', dense=True,
... growth_rate=0.5)
>>>
>>> body = FullyConnected(n_in=32, feat_map=head.feat_map, depth=6,
... width=50, act='prelu', bn=True,
... lookup_init=lookup_uniform_init)

	
forward(x)

	Pass tensor through block

	Parameters

	x (Tensor) – input tensor

	Returns
	Resulting tensor

	Return type

	Tensor

	
get_out_size()

	Get size width of output layer

	Return type

	int

	Returns

	Width of output layer

	
class lumin.nn.models.blocks.body.MultiBlock(n_in, feat_map, blocks, feats_per_block, bottleneck_sz=0, bottleneck_act=None, lookup_init=<function lookup_normal_init>, lookup_act=<function lookup_act>, freeze=False)

	Bases: lumin.nn.models.blocks.body.AbsBody

Body block allowing outputs of head block to be split amongst a series of body blocks.
Output is the concatination of all sub-body blocks.
Optionally, single-neuron ‘bottleneck’ layers can be used to pass an input to each sub-block based on a learned function of the input features that block
would otherwise not receive, i.e. a highly compressed representation of the rest of teh feature space.

	Parameters

	
	n_in (int) – number of inputs to the block

	feat_map (Dict[str, List[int]]) – dictionary mapping input features to the model to outputs of head block

	blocks (List[partial]) – list of uninstantciated AbsBody blocks to which to pass a subsection of the total inputs. Note that
partials should be used to set any relevant parameters at initialisation time

	feats_per_block (List[List[str]]) – list of lists of names of features to pass to each AbsBody, not that the feat_map provided by
AbsHead will map features to their relavant head outputs

	bottleneck – if true, each block will receive the output of a single neuron which takes as input all the features which each given block does not
directly take as inputs

	bottleneck_act (Optional[str]) – if set to a string representation of an activation function, the output of each bottleneck neuron will be passed throguh the defined
activation function before being passed to their associated blocks

	lookup_init (Callable[[str, Optional[int], Optional[int]], Callable[[Tensor], None]]) – function taking choice of activation function, number of inputs, and number of outputs an returning a function to initialise layer weights.

	lookup_act (Callable[[str], Any]) – function taking choice of activation function and returning an activation function layer

	freeze (bool) – whether to start with module parameters set to untrainable

	Examples::
	>>> body = MultiBlock(
... blocks=[partial(FullyConnected, depth=1, width=50, act='swish'),
... partial(FullyConnected, depth=6, width=55, act='swish',
... dense=True, growth_rate=-0.1)],
... feats_per_block=[[f for f in train_feats if 'DER_' in f],
... [f for f in train_feats if 'PRI_' in f]])
>>>
>>> body = MultiBlock(
... blocks=[partial(FullyConnected, depth=1, width=50, act='swish'),
... partial(FullyConnected, depth=6, width=55, act='swish',
... dense=True, growth_rate=-0.1)],
... feats_per_block=[[f for f in train_feats if 'DER_' in f],
... [f for f in train_feats if 'PRI_' in f]],
... bottleneck=True)
>>>
>>> body = MultiBlock(
... blocks=[partial(FullyConnected, depth=1, width=50, act='swish'),
... partial(FullyConnected, depth=6, width=55, act='swish',
... dense=True, growth_rate=-0.1)],
... feats_per_block=[[f for f in train_feats if 'DER_' in f],
... [f for f in train_feats if 'PRI_' in f]],
... bottleneck=True, bottleneck_act='swish')

	
forward(x)

	Pass tensor through block

	Parameters

	x (Tensor) – input tensor

	Returns
	Resulting tensor

	Return type

	Tensor

	
get_out_size()

	Get size width of output layer

	Return type

	int

	Returns

	Total number of outputs accross all blocks

lumin.nn.models.blocks.conv_blocks module

	
class lumin.nn.models.blocks.conv_blocks.Conv1DBlock(in_c, out_c, kernel_sz, padding='auto', stride=1, act='relu', bn=False, lookup_init=<function lookup_normal_init>, lookup_act=<function lookup_act>)

	Bases: torch.nn.modules.module.Module

Basic building block for a building and applying a single 1D convolutional layer.

	Parameters

	
	in_c (int) – number of input channels (number of features per object / rows in input matrix)

	out_c (int) – number of output channels (number of features / rows in output matrix)

	kernel_sz (int) – width of kernel, i.e. the number of columns to overlay

	padding (Union[int, str]) – amount of padding columns to add at start and end of convolution.
If left as ‘auto’, padding will be automatically computed to conserve the number of columns.

	stride (int) – number of columns to move kernel when computing convolutions. Stride 1 = kernel centred on each column,
stride 2 = kernel centred on ever other column and input size halved, et cetera.

	act (str) – string representation of argument to pass to lookup_act

	bn (bool) – whether to use batch normalisation (default order weights->activation->batchnorm)

	lookup_init (Callable[[str, Optional[int], Optional[int]], Callable[[Tensor], None]]) – function taking choice of activation function, number of inputs, and number of outputs an returning a function to initialise layer weights.

	lookup_act (Callable[[str], Any]) – function taking choice of activation function and returning an activation function layer

	Examples::
	>>> conv = Conv1DBlock(in_c=3, out_c=16, kernel_sz=3)
>>>
>>> conv = Conv1DBlock(in_c=16, out_c=32, kernel_sz=3, stride=2)
>>>
>>> conv = Conv1DBlock(in_c=3, out_c=16, kernel_sz=3, act='swish', bn=True)

	
forward(x)

	Passes input through the layers.
Might need to be overloaded in inheritance, depending on architecture.

	Parameters

	x (Tensor) – input tensor

	Return type

	Tensor

	Returns

	Resulting tensor

	
get_conv_layer(in_c, out_c, kernel_sz, padding='auto', stride=1, pre_act=False, groups=1)

	Builds a sandwich of layers with a single concilutional layer, plus any requested batch norm and activation.
Also initialises layers to requested scheme.

	Parameters

	
	in_c (int) – number of input channels (number of features per object / rows in input matrix)

	out_c (int) – number of output channels (number of features / rows in output matrix)

	kernel_sz (int) – width of kernel, i.e. the number of columns to overlay

	padding (Union[int, str]) – amount of padding columns to add at start and end of convolution.
If left as ‘auto’, padding will be automatically computed to conserve the number of columns.

	stride (int) – number of columns to move kernel when computing convolutions. Stride 1 = kernel centred on each column,
stride 2 = kernel centred on ever other column and input size halved, et cetera.

	pre_act (bool) – whether to apply batchnorm and activation layers prior to the weight layer, or afterwards

	groups (int) – number of blocks of connections from input channels to output channels

	Return type

	Module

	
static get_padding(kernel_sz)

	Automatically computes the required padding to keep the number of columns equal before and after convolution

	Parameters

	kernel_sz (int) – width of convolutional kernel

	Return type

	int

	Returns

	size of padding

	
set_layers()

	One of the main function to overload when inheriting from class. By default calls self.get_conv_layer once but can be changed to produce more
complicated architectures. Sets self.layers to the constructed architecture.

	Return type

	None

	
class lumin.nn.models.blocks.conv_blocks.Res1DBlock(in_c, out_c, kernel_sz, padding='auto', stride=1, act='relu', bn=False, lookup_init=<function lookup_normal_init>, lookup_act=<function lookup_act>)

	Bases: lumin.nn.models.blocks.conv_blocks.Conv1DBlock

Basic building block for a building and applying a pair of residually connected 1D convolutional layers (https://arxiv.org/abs/1512.03385).
Batchnorm is applied ‘pre-activation’ as per https://arxiv.org/pdf/1603.05027.pdf, and convolutional shortcuts (again https://arxiv.org/pdf/1603.05027.pdf)
are used when the stride of the first layer is greater than 1, or the number of input channels does not equal the number of output channels.

	Parameters

	
	in_c (int) – number of input channels (number of features per object / rows in input matrix)

	out_c (int) – number of output channels (number of features / rows in output matrix)

	kernel_sz (int) – width of kernel, i.e. the number of columns to overlay

	padding (Union[int, str]) – amount of padding columns to add at start and end of convolution.
If left as ‘auto’, padding will be automatically computed to conserve the number of columns.

	stride (int) – number of columns to move kernel when computing convolutions. Stride 1 = kernel centred on each column,
stride 2 = kernel centred on ever other column and input size halved, et cetera.

	act (str) – string representation of argument to pass to lookup_act

	bn (bool) – whether to use batch normalisation (order is pre-activation: batchnorm->activation->weights)

	lookup_init (Callable[[str, Optional[int], Optional[int]], Callable[[Tensor], None]]) – function taking choice of activation function, number of inputs, and number of outputs an returning a function to initialise layer weights.

	lookup_act (Callable[[str], Any]) – function taking choice of activation function and returning an activation function layer

	Examples::
	>>> conv = Res1DBlock(in_c=16, out_c=16, kernel_sz=3)
>>>
>>> conv = Res1DBlock(in_c=16, out_c=32, kernel_sz=3, stride=2)
>>>
>>> conv = Res1DBlock(in_c=16, out_c=16, kernel_sz=3, act='swish', bn=True)

	
forward(x)

	Passes input through the pair of layers and then adds the resulting tensor to the original input,
which may be passed through a shortcut connection is necessary.

	Parameters

	x (Tensor) – input tensor

	Return type

	Tensor

	Returns

	Resulting tensor

	
set_layers()

	Constructs a pair of pre-activation convolutional layers, and a shortcut layer if necessary.

	
class lumin.nn.models.blocks.conv_blocks.ResNeXt1DBlock(in_c, inter_c, cardinality, out_c, kernel_sz, padding='auto', stride=1, act='relu', bn=False, lookup_init=<function lookup_normal_init>, lookup_act=<function lookup_act>)

	Bases: lumin.nn.models.blocks.conv_blocks.Conv1DBlock

Basic building block for a building and applying a set of residually connected groups of 1D convolutional layers (https://arxiv.org/abs/1611.05431).
Batchnorm is applied ‘pre-activation’ as per https://arxiv.org/pdf/1603.05027.pdf, and convolutional shortcuts (again https://arxiv.org/pdf/1603.05027.pdf)
are used when the stride of the first layer is greater than 1, or the number of input channels does not equal the number of output channels.

	Parameters

	
	in_c (int) – number of input channels (number of features per object / rows in input matrix)

	inter_c (int) – number of intermediate channels in groups

	cardinality (int) – number of groups

	out_c (int) – number of output channels (number of features / rows in output matrix)

	kernel_sz (int) – width of kernel, i.e. the number of columns to overlay

	padding (Union[int, str]) – amount of padding columns to add at start and end of convolution.
If left as ‘auto’, padding will be automatically computed to conserve the number of columns.

	stride (int) – number of columns to move kernel when computing convolutions. Stride 1 = kernel centred on each column,
stride 2 = kernel centred on ever other column and input size halved, et cetera.

	act (str) – string representation of argument to pass to lookup_act

	bn (bool) – whether to use batch normalisation (order is pre-activation: batchnorm->activation->weights)

	lookup_init (Callable[[str, Optional[int], Optional[int]], Callable[[Tensor], None]]) – function taking choice of activation function, number of inputs, and number of outputs an returning a function to initialise layer weights.

	lookup_act (Callable[[str], Any]) – function taking choice of activation function and returning an activation function layer

	Examples::
	>>> conv = ResNeXt1DBlock(in_c=32, inter_c=4, cardinality=4, out_c=32, kernel_sz=3)
>>>
>>> conv = ResNeXt1DBlock(in_c=32, inter_c=4, cardinality=4, out_c=32, kernel_sz=3, stride=2)
>>>
>>> conv = ResNeXt1DBlock(in_c=32, inter_c=4, cardinality=4, out_c=32, kernel_sz=3, act='swish', bn=True)

	
forward(x)

	Passes input through the set of layers and then adds the resulting tensor to the original input,
which may be passed through a shortcut connection is necessary.

	Parameters

	x (Tensor) – input tensor

	Return type

	Tensor

	Returns

	Resulting tensor

	
set_layers()

	Constructs a set of grouped pre-activation convolutional layers, and a shortcut layer if necessary.

lumin.nn.models.blocks.endcap module

	
class lumin.nn.models.blocks.endcap.AbsEndcap(model)

	Bases: torch.nn.modules.module.Module

Abstract class for constructing post training layer which performs further calculation on NN outputs.
Used when NN was trained to some proxy objective

	Parameters

	model (Module) – trained Model to wrap

	
forward(x)

	Pass tensor through endcap and compute function

	Parameters

	x (Tensor) – model output tensor

	Returns
	Resulting tensor

	Return type

	Tensor

	
abstract func(x)

	Transformation functio to apply to model outputs

	Arguements:
	x: model output tensor

	Return type

	Tensor

	Returns

	Resulting tensor

	
predict(inputs, as_np=True)

	Evaluate model on input tensor, and comput function of model outputs

	Parameters

	
	inputs (Union[ndarray, DataFrame, Tensor]) – input data as Numpy array, Pandas DataFrame, or tensor on device

	as_np (bool) – whether to return predictions as Numpy array (otherwise tensor)

	Return type

	Union[ndarray, Tensor]

	Returns

	model predictions pass through endcap function

lumin.nn.models.blocks.head module

	
class lumin.nn.models.blocks.head.CatEmbHead(cont_feats, do_cont=0, do_cat=0, cat_embedder=None, lookup_init=<function lookup_normal_init>, freeze=False)

	Bases: lumin.nn.models.blocks.head.AbsHead

Standard model head for columnar data.
Provides inputs for continuous features and embedding matrices for categorical inputs, and uses a dense layer to upscale to width of network body.
Designed to be passed as a ‘head’ to ModelBuilder.
Supports batch normalisation and dropout (at separate rates for continuous features and categorical embeddings).
Continuous features are expected to be the first len(cont_feats) columns of input tensors and categorical features the remaining columns.
Embedding arguments for categorical features are set using a CatEmbedder.

	Parameters

	
	cont_feats (List[str]) – list of names of continuous input features

	do_cont (float) – if not None will add a dropout layer with dropout rate do acting on the continuous inputs prior to concatination wih the categorical embeddings

	do_cat (float) – if not None will add a dropout layer with dropout rate do acting on the categorical embeddings prior to concatination wih the continuous inputs

	cat_embedder (Optional[CatEmbedder]) – CatEmbedder providing details of how to embed categorical inputs

	lookup_init (Callable[[str, Optional[int], Optional[int]], Callable[[Tensor], None]]) – function taking choice of activation function, number of inputs, and number of outputs an returning a function to initialise layer weights.

	freeze (bool) – whether to start with module parameters set to untrainable

	Examples::
	>>> head = CatEmbHead(cont_feats=cont_feats)
>>>
>>> head = CatEmbHead(cont_feats=cont_feats,
... cat_embedder=CatEmbedder.from_fy(train_fy))
>>>
>>> head = CatEmbHead(cont_feats=cont_feats,
... cat_embedder=CatEmbedder.from_fy(train_fy),
... do_cont=0.1, do_cat=0.05)
>>>
>>> head = CatEmbHead(cont_feats=cont_feats,
... cat_embedder=CatEmbedder.from_fy(train_fy),
... lookup_init=lookup_uniform_init)

	
forward(x)

	Pass tensor through block

	Parameters

	x (Tensor) – input tensor

	Returns
	Resulting tensor

	Return type

	Tensor

	
get_embeds()

	Get state_dict for every embedding matrix.

	Return type

	Dict[str, OrderedDict]

	Returns

	Dictionary mapping categorical features to learned embedding matrix

	
get_out_size()

	Get size width of output layer

	Return type

	int

	Returns

	Width of output layer

	
plot_embeds(savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Plot representations of embedding matrices for each categorical feature.

	Parameters

	
	savename (Optional[str]) – if not None, will save copy of plot to give path

	settings (PlotSettings) – PlotSettings class to control figure appearance

	Return type

	None

	
save_embeds(path)

	Save learned embeddings to path.
Each categorical embedding matic will be saved as a separate state_dict with name equal to the feature name as set in cat_embedder

	Parameters

	path (Path) – path to which to save embedding weights

	Return type

	None

	
class lumin.nn.models.blocks.head.MultiHead(cont_feats, matrix_head, flat_head=<class 'lumin.nn.models.blocks.head.CatEmbHead'>, cat_embedder=None, lookup_init=<function lookup_normal_init>, freeze=False, **kargs)

	Bases: lumin.nn.models.blocks.head.AbsHead

Wrapper head to handel data containing flat continuous and categorical features, and matrix data.
Flat inputs are passed through flat_head, and matrix inputs are passed through matrix_head. The outputs of both blocks are then concatenated together.
Incoming data can either be: Completely flat, in which case the matrix_head should construct its own matrix from the data;
or a tuple of flat data and the matrix, in which case the matrix_head will receive the data already in matrix format.

	Parameters

	
	cont_feats (List[str]) – list of names of continuous and matrix input features

	matrix_head (Callable[[Any], AbsMatrixHead]) – Uninitialised (partial) head to handle matrix data e.g. InteractionNet

	flat_head (Callable[[Any], AbsHead]) – Uninitialised (partial) head to handle flat data e.g. CatEmbHead

	cat_embedder (Optional[CatEmbedder]) – CatEmbedder providing details of how to embed categorical inputs

	lookup_init (Callable[[str, Optional[int], Optional[int]], Callable[[Tensor], None]]) – function taking choice of activation function, number of inputs, and number of outputs an returning a function to initialise layer weights.

	freeze (bool) – whether to start with module parameters set to untrainable

Examples::
>>> inet = partial(InteractionNet, intfunc_depth=2,intfunc_width=4,intfunc_out_sz=3,
… outfunc_depth=2,outfunc_width=5,outfunc_out_sz=4,agg_method=’flatten’,
… feats_per_vec=feats_per_vec,vecs=vecs, act=’swish’)
… multihead = MultiHead(cont_feats=cont_feats+matrix_feats, matrix_head=inet, cat_embedder=CatEmbedder.from_fy(train_fy))

	
forward(x)

	Pass incoming data through flat and matrix heads.
If x is a Tuple then the first element is passed to the flat head and the secons is sent to the matrix head.
Else the elements corresponding to flat dta are sent to the flat head and the elements corresponding to matrix elements are sent to the matrix head.

	Parameters

	x (Union[Tensor, Tuple[Tensor, Tensor]]) – input data as either a flat Tensor or a Tuple of the form [flat Tensor, matrix Tensor]

	Return type

	Tensor

	Returns

	Concetanted outout of flat and matrix heads

	
get_out_size()

	Get size of output

	Return type

	int

	Returns

	Output size of flat head + output size of matrix head

	
class lumin.nn.models.blocks.head.InteractionNet(cont_feats, vecs, feats_per_vec, intfunc_depth, intfunc_width, intfunc_out_sz, outfunc_depth, outfunc_width, outfunc_out_sz, agg_method, do=0, bn=False, act='relu', lookup_init=<function lookup_normal_init>, lookup_act=<function lookup_act>, freeze=False, **kargs)

	Bases: lumin.nn.models.blocks.head.AbsMatrixHead

Implementation of the Interaction Graph-Network (https://arxiv.org/abs/1612.00222).
Shown to be applicable for embedding many 4-momenta in e.g. https://arxiv.org/abs/1908.05318

Incoming data can either be flat, in which case it is reshaped into a matrix, or be supplied directly in column-wise matrix form.
Matrices should/will be column-wise: each column is a seperate object (e.g. particle and jet) and each row is a feature (e.g. energy and mometum component).
Matrix elements are expected to be named according to {object}_{feature}, e.g. photon_energy.
vecs (vectors) should then be a list of objects, i.e. column headers, feature prefixes.
feats_per_vec should be a list of features, i.e. row headers, feature suffixes.

Note

To allow for the fact that there may be nonexistant features (e.g. z-component of missing energy), cont_feats should be a list of all matrix features
which really do exist (i.e. are present in input data), and be in the same order as the incoming data. Nonexistant features will be set zero.

The penultimate stage of processing in the interaction net is a matrix, this must be processed into a flat tensor. agg_method controls how this is done:
‘sum’ will sum over the embedded representations of each object meaning that the objects can be placed in any order, however some information will be lost
during the aggregation. ‘flatten’ will flatten out the matrix preserving all the information, however the objects must be placed in some order each time.
Additionally, the ‘flatten’ mode can potentially become quite large if many objects are embedded. A future comprimise might be to feed the embeddings into
a recurrent layer to provide a smaller output which preserves more information than the summing.

	Parameters

	
	cont_feats (List[str]) – list of all the matrix features which are present in the input data

	vecs (List[str]) – list of objects, i.e. column headers, feature prefixes

	feats_per_vec (List[str]) – list of features per object, i.e. row headers, feature suffixes

	intfunc_depth (int) – number of layers in the interaction-representation network

	intfunc_width (int) – width of hidden layers in the interaction-representation network

	intfunc_out_sz (int) – width of output layer of the interaction-representation network, i.e. the size of each interaction representation

	outfunc_depth (int) – number of layers in the post-interaction network

	outfunc_width (int) – width of hidden layers in the post-interaction network

	outfunc_out_sz (int) – width of output layer of the post-interaction network, i.e. the size of each output representation

	agg_method (str) – how to transform the output matrix, currently either ‘sum’ to sum across objects, or ‘flatten’ to flatten out the matrix

	do (float) – dropout rate to be applied to hidden layers in the interaction-representation and post-interaction networks

	bn (bool) – whether batch normalisation should be applied to hidden layers in the interaction-representation and post-interaction networks

	act (str) – activation function to apply to hidden layers in the interaction-representation and post-interaction networks

	lookup_init (Callable[[str, Optional[int], Optional[int]], Callable[[Tensor], None]]) – function taking choice of activation function, number of inputs, and number of outputs an returning a function to initialise layer weights.

	lookup_act (Callable[[str], Any]) – function taking choice of activation function and returning an activation function layer

	freeze (bool) – whether to start with module parameters set to untrainable

	Examples::
	>>> inet = InteractionNet(cont_feats=matrix_feats, feats_per_vec=feats_per_vec,vecs=vecs,
... intfunc_depth=2,intfunc_width=4,intfunc_out_sz=3,
... outfunc_depth=2,outfunc_width=5,outfunc_out_sz=4,agg_method='flatten')
>>>
>>> inet = InteractionNet(cont_feats=matrix_feats, feats_per_vec=feats_per_vec,vecs=vecs,
... intfunc_depth=2,intfunc_width=4,intfunc_out_sz=6,
... outfunc_depth=2,outfunc_width=5,outfunc_out_sz=8,agg_method='sum')
>>>
>>> inet = InteractionNet(cont_feats=matrix_feats, feats_per_vec=feats_per_vec,vecs=vecs,
... intfunc_depth=3,intfunc_width=4,intfunc_out_sz=3,
... outfunc_depth=3,outfunc_width=5,outfunc_out_sz=4,agg_method='flatten',
... do=0.1, bn=True, act='swish', lookup_init=lookup_uniform_init)

	
forward(x)

	Passes input through the interaction network and aggregates out down to a flat tensor.

	Parameters

	x (Union[Tensor, Tuple[Tensor, Tensor]]) – If a tuple, the second element is assumed to the be the matrix data. If a flat tensor, will conver the data to a matrix

	Return type

	Tensor

	Returns

	Resulting tensor

	
get_out_size()

	Get size of output

	Return type

	int

	Returns

	Width of output representation

	
class lumin.nn.models.blocks.head.RecurrentHead(cont_feats, vecs, feats_per_vec, depth, width, bidirectional=False, rnn=<class 'torch.nn.modules.rnn.RNN'>, do=0.0, act='tanh', stateful=False, freeze=False, **kargs)

	Bases: lumin.nn.models.blocks.head.AbsMatrixHead

Recurrent head for row-wise matrix data applying e.g. RNN, LSTM, GRU.

Incoming data can either be flat, in which case it is reshaped into a matrix, or be supplied directly into matrix form.
Matrices should/will be row-wise: each column is a seperate object (e.g. particle and jet) and each row is a feature (e.g. energy and mometum component).
Matrix elements are expected to be named according to {object}_{feature}, e.g. photon_energy.
vecs (vectors) should then be a list of objects, i.e. row headers, feature prefixes.
feats_per_vec should be a list of features, i.e. column headers, feature suffixes.

Note

To allow for the fact that there may be nonexistant features (e.g. z-component of missing energy), cont_feats should be a list of all matrix features
which really do exist (i.e. are present in input data), and be in the same order as the incoming data. Nonexistant features will be set zero.

	Parameters

	
	cont_feats (List[str]) – list of all the matrix features which are present in the input data

	vecs (List[str]) – list of objects, i.e. row headers, feature prefixes

	feats_per_vec (List[str]) – list of features per object, i.e. columns headers, feature suffixes

	depth (int) – number of hidden layers to use

	width (int) – size of each hidden state

	bidirectional (bool) – whether to set recurrent layers to be bidirectional

	rnn (RNNBase) – module class to use for the recurrent layer, e.g. torch.nn.RNN, torch.nn.LSTM, torch.nn.GRU

	do (float) – dropout rate to be applied to hidden layers

	act (str) – activation function to apply to hidden layers, only used if rnn expects a nonliearity

	stateful (bool) – whether to return all intermediate hidden states, or only the final hidden states

	freeze (bool) – whether to start with module parameters set to untrainable

	Examples::
	>>> rnn = RecurrentHead(cont_feats=matrix_feats, feats_per_vec=feats_per_vec,vecs=vecs, depth=1, width=20)
>>>
>>> rnn = RecurrentHead(cont_feats=matrix_feats, feats_per_vec=feats_per_vec,vecs=vecs,
... depth=2, width=10, act='relu', bidirectional=True)
>>>
>>> lstm = RecurrentHead(cont_feats=matrix_feats, feats_per_vec=feats_per_vec,vecs=vecs,
... depth=1, width=10, rnn=nn.LSTM)
>>>
>>> gru = RecurrentHead(cont_feats=matrix_feats, feats_per_vec=feats_per_vec,vecs=vecs,
... depth=3, width=10, rnn=nn.GRU, bidirectional=True)

	
forward(x)

	Passes input through the recurrent network.

	Parameters

	x (Union[Tensor, Tuple[Tensor, Tensor]]) – If a tuple, the second element is assumed to the be the matrix data. If a flat tensor, will conver the data to a matrix

	Return type

	Tensor

	Returns

	if stateful, returns all hidden states, otherwise only returns last hidden state

	
get_out_size()

	Get size of output

	Return type

	Union[int, Tuple[int, int]]

	Returns

	Width of output representation, or shape of output if stateful

	
class lumin.nn.models.blocks.head.AbsConv1dHead(cont_feats, vecs, feats_per_vec, act='relu', bn=False, layer_kargs=None, lookup_init=<function lookup_normal_init>, lookup_act=<function lookup_act>, freeze=False, **kargs)

	Bases: lumin.nn.models.blocks.head.AbsMatrixHead

Abstract wrapper head for applying 1D convolutions to column-wise matrix data.
Users should inherit from this class and overload get_layers() to define their model.
Some common convolutional layers are already defined (e.g. ConvBlock and
ResNeXt), which are accessable using methods such as
:meth`~lumin.nn.models.blocks.heads.AbsConv1dHead..get_conv1d_block`.
For more complicated models, foward() can also be overwritten
The output size of the block is automatically computed during initialisation by passing through random pseudodata.

Incoming data can either be flat, in which case it is reshaped into a matrix, or be supplied directly into matrix form.
Matrices should/will be row-wise: each column is a seperate object (e.g. particle and jet) and each row is a feature (e.g. energy and mometum component).
Matrix elements are expected to be named according to {object}_{feature}, e.g. photon_energy.
vecs (vectors) should then be a list of objects, i.e. row headers, feature prefixes.
feats_per_vec should be a list of features, i.e. column headers, feature suffixes.

Note

To allow for the fact that there may be nonexistant features (e.g. z-component of missing energy), cont_feats should be a list of all matrix features
which really do exist (i.e. are present in input data), and be in the same order as the incoming data. Nonexistant features will be set zero.

	Parameters

	
	cont_feats (List[str]) – list of all the matrix features which are present in the input data

	vecs (List[str]) – list of objects, i.e. row headers, feature prefixes

	feats_per_vec (List[str]) – list of features per object, i.e. columns headers, feature suffixes

	act (str) – activation function passed to get_layers

	bn (bool) – batch normalisation argument passed to get_layers

	layer_kargs (Optional[Dict[str, Any]]) – dictionary of keyword arguments which are passed to get_layers

	lookup_init (Callable[[str, Optional[int], Optional[int]], Callable[[Tensor], None]]) – function taking choice of activation function, number of inputs, and number of outputs an returning a function to initialise layer weights.

	freeze (bool) – whether to start with module parameters set to untrainable

	Examples::
	>>> class MyCNN(AbsConv1dHead):
... def get_layers(self, act:str='relu', bn:bool=False, **kargs) -> Tuple[nn.Module, int]:
... layers = []
... layers.append(self.get_conv1d_block(3, 16, stride=1, kernel_sz=3, act=act, bn=bn))
... layers.append(self.get_conv1d_block(16, 16, stride=1, kernel_sz=3, act=act, bn=bn))
... layers.append(self.get_conv1d_block(16, 32, stride=2, kernel_sz=3, act=act, bn=bn))
... layers.append(self.get_conv1d_block(32, 32, stride=1, kernel_sz=3, act=act, bn=bn))
... layers.append(nn.AdaptiveAvgPool1d(1))
... layers = nn.Sequential(*layers)
... return layers
...
... cnn = MyCNN(cont_feats=matrix_feats, vecs=vectors, feats_per_vec=feats_per_vec)
>>>
>>> class MyResNet(AbsConv1dHead):
... def get_layers(self, act:str='relu', bn:bool=False, **kargs) -> Tuple[nn.Module, int]:
... layers = []
... layers.append(self.get_conv1d_block(3, 16, stride=1, kernel_sz=3, act='linear', bn=False))
... layers.append(self.get_conv1d_res_block(16, 16, stride=1, kernel_sz=3, act=act, bn=bn))
... layers.append(self.get_conv1d_res_block(16, 32, stride=2, kernel_sz=3, act=act, bn=bn))
... layers.append(self.get_conv1d_res_block(32, 32, stride=1, kernel_sz=3, act=act, bn=bn))
... layers.append(nn.AdaptiveAvgPool1d(1))
... layers = nn.Sequential(*layers)
... return layers
...
... cnn = MyResNet(cont_feats=matrix_feats, vecs=vectors, feats_per_vec=feats_per_vec)
>>>
>>> class MyResNeXt(AbsConv1dHead):
... def get_layers(self, act:str='relu', bn:bool=False, **kargs) -> Tuple[nn.Module, int]:
... layers = []
... layers.append(self.get_conv1d_block(3, 32, stride=1, kernel_sz=3, act='linear', bn=False))
... layers.append(self.get_conv1d_resNeXt_block(32, 4, 4, 32, stride=1, kernel_sz=3, act=act, bn=bn))
... layers.append(self.get_conv1d_resNeXt_block(32, 4, 4, 32, stride=2, kernel_sz=3, act=act, bn=bn))
... layers.append(self.get_conv1d_resNeXt_block(32, 4, 4, 32, stride=1, kernel_sz=3, act=act, bn=bn))
... layers.append(nn.AdaptiveAvgPool1d(1))
... layers = nn.Sequential(*layers)
... return layers
...
... cnn = MyResNeXt(cont_feats=matrix_feats, vecs=vectors, feats_per_vec=feats_per_vec)

	
check_out_sz()

	Automatically computes the output size of the head by passing through random data of the expected shape

	Return type

	int

	Returns

	x.size(-1) where x is the outgoing tensor from the head

	
forward(x)

	Passes input through the convolutional network.

	Parameters

	x (Union[Tensor, Tuple[Tensor, Tensor]]) – If a tuple, the second element is assumed to the be the matrix data. If a flat tensor, will conver the data to a matrix

	Return type

	Tensor

	Returns

	Resulting tensor

	
get_conv1d_block(in_c, out_c, kernel_sz, padding='auto', stride=1, act='relu', bn=False)

	Wrapper method to build a ConvBlock object.

	Parameters

	
	in_c (int) – number of input channels (number of features per object / rows in input matrix)

	out_c (int) – number of output channels (number of features / rows in output matrix)

	kernel_sz (int) – width of kernel, i.e. the number of columns to overlay

	padding (Union[int, str]) – amount of padding columns to add at start and end of convolution.
If left as ‘auto’, padding will be automatically computed to conserve the number of columns.

	stride (int) – number of columns to move kernel when computing convolutions. Stride 1 = kernel centred on each column,
stride 2 = kernel centred on ever other column and input size halved, et cetera.

	act (str) – string representation of argument to pass to lookup_act

	bn (bool) – whether to use batch normalisation (order is weights->activation->batchnorm)

	Return type

	Conv1DBlock

	Returns

	Instantiated ConvBlock object

	
get_conv1d_resNeXt_block(in_c, inter_c, cardinality, out_c, kernel_sz, padding='auto', stride=1, act='relu', bn=False)

	Wrapper method to build a ResNeXt1DBlock object.

	Parameters

	
	in_c (int) – number of input channels (number of features per object / rows in input matrix)

	inter_c (int) – number of intermediate channels in groups

	cardinality (int) – number of groups

	out_c (int) – number of output channels (number of features / rows in output matrix)

	kernel_sz (int) – width of kernel, i.e. the number of columns to overlay

	padding (Union[int, str]) – amount of padding columns to add at start and end of convolution.
If left as ‘auto’, padding will be automatically computed to conserve the number of columns.

	stride (int) – number of columns to move kernel when computing convolutions. Stride 1 = kernel centred on each column,
stride 2 = kernel centred on ever other column and input size halved, et cetera.

	act (str) – string representation of argument to pass to lookup_act

	bn (bool) – whether to use batch normalisation (order is pre-activation: batchnorm->activation->weights)

	Return type

	ResNeXt1DBlock

	Returns

	Instantiated ResNeXt1DBlock object

	
get_conv1d_res_block(in_c, out_c, kernel_sz, padding='auto', stride=1, act='relu', bn=False)

	Wrapper method to build a Res1DBlock object.

	Parameters

	
	in_c (int) – number of input channels (number of features per object / rows in input matrix)

	out_c (int) – number of output channels (number of features / rows in output matrix)

	kernel_sz (int) – width of kernel, i.e. the number of columns to overlay

	padding (Union[int, str]) – amount of padding columns to add at start and end of convolution.
If left as ‘auto’, padding will be automatically computed to conserve the number of columns.

	stride (int) – number of columns to move kernel when computing convolutions. Stride 1 = kernel centred on each column,
stride 2 = kernel centred on ever other column and input size halved, et cetera.

	act (str) – string representation of argument to pass to lookup_act

	bn (bool) – whether to use batch normalisation (order is pre-activation: batchnorm->activation->weights)

	Return type

	Res1DBlock

	Returns

	Instantiated Res1DBlock object

	
abstract get_layers(in_c, act='relu', bn=False, **kargs)

	Abstract function to be overloaded by user. Should return a single torch.nn.Module which accepts the expected input matrix data.

	Return type

	Module

	
get_out_size()

	Get size of output

	Return type

	int

	Returns

	Width of output representation

	
class lumin.nn.models.blocks.head.LorentzBoostNet(cont_feats, vecs, feats_per_vec, n_particles, feat_extractor=None, bn=True, lookup_init=<function lookup_normal_init>, lookup_act=<function lookup_act>, freeze=False, **kargs)

	Bases: lumin.nn.models.blocks.head.AbsMatrixHead

Implementation of the Lorentz Boost Network (https://arxiv.org/abs/1812.09722), which takes 4-momenta for particles and learns new particles and reference
frames from linear combinations of the original particles, and then boosts the new particles into the learned reference frames. Preset kernel functions are
the run over the 4-momenta of the boosted particles to compute a set of veriables per particle. These functions can be based on pairs etc. of particles,
e.g. angles between particles. (LorentzBoostNet.comb provides an index iterator over all paris of particles).

A default feature extractor is provided which returns the (px,py,pz,E) of the boosted particles and the cosine angle between every pair of boosted particle.
This can be overwritten by passing a function to the feat_extractor argument during initialisation, or overidding LorentzBoostNet.feat_extractor.

Important

4-momenta should be supplied without preprocessing, and 4-momenta must be physical (E>=|p|). It is up to the user to ensure this, and not doing so may
result in errors. A BatchNorm argument (bn) is available to preprocess the features extracted from the boosted particles prior to returning them.

Incoming data can either be flat, in which case it is reshaped into a matrix, or be supplied directly in row-wise matrix form.
Matrices should/will be row-wise: each row is a seperate 4-momenta in the form (px,py,pz,E).
Matrix elements are expected to be named according to {particle}_{feature}, e.g. photon_E.
vecs (vectors) should then be a list of particles, i.e. row headers, feature prefixes.
feats_per_vec should be a list of features, i.e. column headers, feature suffixes.

Note

To allow for the fact that there may be nonexistant features (e.g. z-component of missing energy), cont_feats should be a list of all matrix features
which really do exist (i.e. are present in input data), and be in the same order as the incoming data. Nonexistant features will be set zero.

	Parameters

	
	cont_feats (List[str]) – list of all the matrix features which are present in the input data

	vecs (List[str]) – list of objects, i.e. column headers, feature prefixes

	feats_per_vec (List[str]) – list of features per object, i.e. row headers, feature suffixes

	n_particles (int) – the number of particles and reference frames to learn

	feat_extractor (Optional[Callable[[Tensor], Tensor]]) – if not None, will use the argument as the function to extract features from the 4-momenta of the boosted particles.

	bn (bool) – whether batch normalisation should be applied to the extracted features

	lookup_init (Callable[[str, Optional[int], Optional[int]], Callable[[Tensor], None]]) – function taking choice of activation function, number of inputs, and number of outputs an returning a function to initialise layer weights.
Purely for inheritance, unused by class as is.

	lookup_act (Callable[[str], Any]) – function taking choice of activation function and returning an activation function layer. Purely for inheritance, unused by class as is.

	freeze (bool) – whether to start with module parameters set to untrainable.

	Examples::
	>>> lbn = LorentzBoostNet(cont_feats=matrix_feats, feats_per_vec=feats_per_vec,vecs=vecs, n_particles=6)
>>>
>>> def feat_extractor(x:Tensor) -> Tensor: # Return masses of boosted particles, x dimensions = [batch,particle,4-mom]
... momenta,energies = x[:,:,:3], x[:,:,3:]
... mass = torch.sqrt((energies**2)-torch.sum(momenta**2, dim=-1)[:,:,None])
... return mass
>>> lbn = InteractionNet(cont_feats=matrix_feats, feats_per_vec=feats_per_vec,vecs=vecs, n_particle=6, feat_extractor=feat_extractor)

	
check_out_sz()

	Automatically computes the output size of the head by passing through random data of the expected shape

	Return type

	int

	Returns

	x.size(-1) where x is the outgoing tensor from the head

	
feat_extractor(x)

	Computes features from boosted particle 4-momenta. Incoming tensor x contains all 4-momenta for all particles for all datapoints in minibatch.
Default function returns 4-momenta and cosine angle between all particles.

	Parameters

	x (Tensor) – 3D incoming tensor with dimensions: [batch, particle, 4-mom (px,py,pz,E)]

	Return type

	Tensor

	Returns

	2D tensor with dimensions [batch, features]

	
forward(x)

	Passes input through the LB network and aggregates down to a flat tensor via the feature extractor, optionally passing through a batchnorm layer.

	Parameters

	x (Union[Tensor, Tuple[Tensor, Tensor]]) – If a tuple, the second element is assumed to the be the matrix data. If a flat tensor, will conver the data to a matrix

	Return type

	Tensor

	Returns

	Resulting tensor

	
get_out_size()

	Get size of output

	Return type

	int

	Returns

	Width of output representation

	
class lumin.nn.models.blocks.head.AutoExtractLorentzBoostNet(cont_feats, vecs, feats_per_vec, n_particles, depth, width, n_singles=0, n_pairs=0, act='swish', do=0, bn=False, lookup_init=<function lookup_normal_init>, lookup_act=<function lookup_act>, freeze=False, **kargs)

	Bases: lumin.nn.models.blocks.head.LorentzBoostNet

Modified version of :class:`~lumin.nn.models.blocks.head.LorentzBoostNet (implementation of the Lorentz Boost Network (https://arxiv.org/abs/1812.09722)).
Rather than relying on fixed kernel functions to extract features from the boosted paricles, the functions are learnt during training via neural networks.

Two netrowks are used, one to extract n_singles features from each particle and another to extract n_pairs features from each pair of particles.

Important

4-momenta should be supplied without preprocessing, and 4-momenta must be physical (E>=|p|). It is up to the user to ensure this, and not doing so may
result in errors. A BatchNorm argument (bn) is available to preprocess the 4-momenta of the boosted particles prior to passing them through the neural
networks

Incoming data can either be flat, in which case it is reshaped into a matrix, or be supplied directly in row-wise matrix form.
Matrices should/will be row-wise: each row is a seperate 4-momenta in the form (px,py,pz,E).
Matrix elements are expected to be named according to {particle}_{feature}, e.g. photon_E.
vecs (vectors) should then be a list of particles, i.e. row headers, feature prefixes.
feats_per_vec should be a list of features, i.e. column headers, feature suffixes.

Note

To allow for the fact that there may be nonexistant features (e.g. z-component of missing energy), cont_feats should be a list of all matrix features
which really do exist (i.e. are present in input data), and be in the same order as the incoming data. Nonexistant features will be set zero.

	Parameters

	
	cont_feats (List[str]) – list of all the matrix features which are present in the input data

	vecs (List[str]) – list of objects, i.e. column headers, feature prefixes

	feats_per_vec (List[str]) – list of features per object, i.e. row headers, feature suffixes

	n_particles (int) – the number of particles and reference frames to learn

	depth (int) – the number of hidden layers in each network

	width (int) – the number of neurons per hidden layer

	n_singles (int) – the number of features to extract per individual particle

	n_pairs (int) – the number of features to extract per pair of particles

	act (str) – string representation of argument to pass to lookup_act. Activation should ideally have non-zero outputs to help deal with poorly normalised inputs

	do (float) – dropout rate for use in networks

	bn (bool) – whether to use batch normalisation within networks. Inputs are passed through BN regardless of setting.

	lookup_init (Callable[[str, Optional[int], Optional[int]], Callable[[Tensor], None]]) – function taking choice of activation function, number of inputs, and number of outputs an returning a function to initialise layer weights.

	lookup_act (Callable[[str], Any]) – function taking choice of activation function and returning an activation function layer.

	freeze (bool) – whether to start with module parameters set to untrainable.

	Examples::
	>>> aelbn = AutoExtractLorentzBoostNet(cont_feats=matrix_feats, feats_per_vec=feats_per_vec,vecs=vecs, n_particles=6,
 depth=3, width=10, n_singles=3, n_pairs=2)

	
feat_extractor(x)

	Computes features from boosted particle 4-momenta. Incoming tensor x contains all 4-momenta for all particles for all datapoints in minibatch.
single_nn broadcast to all boosted particles, and pair_nn broadcast to all paris of particles. Returned features are concatenated together.

	Parameters

	x (Tensor) – 3D incoming tensor with dimensions: [batch, particle, 4-mom (px,py,pz,E)]

	Return type

	Tensor

	Returns

	2D tensor with dimensions [batch, features]

lumin.nn.models.blocks.tail module

	
class lumin.nn.models.blocks.tail.ClassRegMulti(n_in, n_out, objective, y_range=None, bias_init=None, y_mean=None, y_std=None, lookup_init=<function lookup_normal_init>, freeze=False)

	Bases: lumin.nn.models.blocks.tail.AbsTail

Output block for (multi(class/label)) classification or regression tasks.
Designed to be passed as a ‘tail’ to ModelBuilder.
Takes output size of network body and scales it to required number of outputs.
For regression tasks, y_range can be set with per-output minima and maxima. The outputs are then adjusted according to ((y_max-y_min)*x)+self.y_min, where x
is the output of the network passed through a sigmoid function. Effectively allowing regression to be performed without normalising and standardising the
target values. Note it is safest to allow some leaway in setting the min and max, e.g. max = 1.2*max, min = 0.8*min
Output activation function is automatically set according to objective and y_range.

	Parameters

	
	n_in (int) – number of inputs to expect

	n_out (int) – number of outputs required

	objective (str) – string representation of network objective, i.e. ‘classification’, ‘regression’, ‘multiclass’

	y_range (Union[Tuple, ndarray, None]) – if not None, will apply rescaling to network outputs: x = ((y_range[1]-y_range[0])*sigmoid(x))+y_range[0].
Incompatible with y_mean and y_std

	bias_init (Optional[float]) – specify an intial bias for the output neurons. Otherwise default values of 0 are used, except for multiclass objectives, which use 1/n_out

	y_mean (Union[float, List[float], ndarray, None]) – if sepcified along with y_std, will apply rescaling to network outputs: x = (y_std*x)+y_mean.
Incopmpatible with y_range

	y_std (Union[float, List[float], ndarray, None]) – if sepcified along with y_mean, will apply rescaling to network outputs: x = (y_std*x)+y_mean.
Incopmpatible with y_range

	lookup_init (Callable[[str, Optional[int], Optional[int]], Callable[[Tensor], None]]) – function taking string representation of activation function, number of inputs, and number of outputs an returning a function to initialise
layer weights.

	Examples::
	>>> tail = ClassRegMulti(n_in=100, n_out=1, objective='classification')
>>>
>>> tail = ClassRegMulti(n_in=100, n_out=5, objective='multiclass')
>>>
>>> y_range = (0.8*targets.min(), 1.2*targets.max())
>>> tail = ClassRegMulti(n_in=100, n_out=1, objective='regression',
... y_range=y_range)
>>>
>>> min_targs = np.min(targets, axis=0).reshape(targets.shape[1],1)
>>> max_targs = np.max(targets, axis=0).reshape(targets.shape[1],1)
>>> min_targs[min_targs > 0] *=0.8
>>> min_targs[min_targs < 0] *=1.2
>>> max_targs[max_targs > 0] *=1.2
>>> max_targs[max_targs < 0] *=0.8
>>> y_range = np.hstack((min_targs, max_targs))
>>> tail = ClassRegMulti(n_in=100, n_out=6, objective='regression',
... y_range=y_range,
... lookup_init=lookup_uniform_init)

	
forward(x)

	Pass tensor through block

	Parameters

	x (Tensor) – input tensor

	Returns
	Resulting tensor

	Return type

	Tensor

	
get_out_size()

	Get size width of output layer

	Return type

	int

	Returns

	Width of output layer

Module contents

lumin.nn.models.layers package

Submodules

lumin.nn.models.layers.activations module

	
lumin.nn.models.layers.activations.lookup_act(act)

	Map activation name to class

	Parameters

	act (str) – string representation of activation function

	Return type

	Any

	Returns

	Class implementing requested activation function

	
class lumin.nn.models.layers.activations.Swish(inplace=False)

	Bases: torch.nn.modules.module.Module

Non-trainable Swish activation function https://arxiv.org/abs/1710.05941

	Parameters

	inplace – whether to apply activation inplace

	Examples::
	>>> swish = Swish()

	
forward(x)

	Pass tensor through Swish function

	Parameters

	x (Tensor) – incoming tensor

	Return type

	Tensor

	Returns

	Resulting tensor

Module contents

lumin.nn.training package

Submodules

lumin.nn.training.fold_train module

	
lumin.nn.training.fold_train.fold_train_ensemble(fy, n_models, bs, model_builder, callback_partials=None, eval_metrics=None, train_on_weights=True, eval_on_weights=True, patience=10, max_epochs=200, shuffle_fold=True, shuffle_folds=True, bulk_move=True, live_fdbk=True, live_fdbk_first_only=True, live_fdbk_extra=True, live_fdbk_extra_first_only=False, savepath=PosixPath('train_weights'), verbose=False, log_output=False, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Main training method for Model.
Trains a specified numer of models created by a ModelBuilder on data provided by a
FoldYielder, and save them to savepath.
Note, this does not return trained models, instead they are saved and must be loaded later. Instead this method returns results of model training.
Each Model is trained on N-1 folds, for a FoldYielder with N folds, and the remaining
fold is used as validation data.
Training folds are loaded iteratively, and model evaluation takes place after each fold use (a sub-epoch), rather than after ever use of all folds (epoch).
Training continues until:

	All of the training folds are used max_epoch number of times;

	Or validation loss does not decrease for patience number of training folds;
(or cycles, if using an AbsCyclicCallback);

	Or a callback triggers trainign to stop, e.g. OneCycle

Depending on the live_fdbk arguments, live plots of losses and other metrics may be shown during training, if running in Jupyter. By default, a live plot
with extra information will be shown for training the first model, and afterwards no live plots will be shown. Shoing the live plot slightly slows down the
training, but can help highlight problems without having to wait to the end. Thererfore this compromises between showing useful information and training
speed, since any problems should hopefully be visible in the first model.

Once training is finished, the state with the lowest validation loss is loaded, evaluated, and saved.

	Parameters

	
	fy (FoldYielder) – FoldYielder interfacing ot training data

	n_models (int) – number of models to train

	bs (int) – batch size. Number of data points per iteration

	model_builder (ModelBuilder) – ModelBuilder creating the networks to train

	callback_partials (Optional[List[partial]]) – optional list of functools.partial, each of which will a instantiate Callback when called

	eval_metrics (Optional[Dict[str, EvalMetric]]) – list of instantiated EvalMetric.
At the end of training, validation data and model predictions will be passed to each, and the results printed and saved

	train_on_weights (bool) – If weights are present in training data, whether to pass them to the loss function during training

	eval_on_weights (bool) – If weights are present in validation data, whether to pass them to the loss function during validation

	patience (int) – number of folds (sub-epochs) or cycles to train without decrease in validation loss before ending training (early stopping)

	max_epochs (int) – maximum number of epochs for which to train

	live_fdbk (bool) – whether or not to show any live feedback at all during training (slightly slows down training, but helps spot problems)

	live_fdbk_first_only (bool) – whether to only show live feedback for the first model trained (trade off between time and problem spotting)

	live_fdbk_extra (bool) – whether to show extra information live feedback (further slows training)

	live_fdbk_extra_first_only (bool) – whether to only show extra live feedback information for the first model trained (trade off between time and information)

	shuffle_fold (bool) – whether to tell BatchYielder to shuffle data

	shuffle_folds (bool) – whether to shuffle the order of the training folds

	bulk_move (bool) – whether to pass all training data to device at once, or by minibatch. Bulk moving will be quicker, but may not fit in memory.

	savepath (Path) – path to to which to save model weights and results

	verbose (bool) – whether to print out extra information during training

	log_output (bool) – whether to save printed results to a log file rather than printing them

	plot_settings (PlotSettings) – PlotSettings class to control figure appearance

	Return type

	Tuple[List[Dict[str, float]], List[Dict[str, List[float]]], List[Dict[str, float]]]

	Returns

	
	results list of validation losses and other eval_metrics results, ordered by model training. Can be used to create an Ensemble.

	histories list of loss histories, ordered by model training

	cycle_losses if an AbsCyclicCallback was passed, list of validation losses at the end of each cycle, ordered by model training. Can be passed to Ensemble.

lumin.nn.training.metric_logger module

	
class lumin.nn.training.metric_logger.MetricLogger(loss_names, n_folds, autolog_scale=True, extra_detail=True, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Bases: object

Provides live feedback during training showing a variety of metrics to help highlight problems or test hyper-parameters without completing a full training.

	Parameters

	
	loss_names (List[str]) – List of names of losses which will be passed to the logger in the order in which they will be passed.
By convention the first name will be used as the training loss when computing the ratio of training to validation losses

	n_folds (int) – Number of folds present in the training data.
The logger assumes that one of these folds is for validation, and so 1 training epoch = (n_fold-1) folds.

	autolog_scale (bool) – Whether to automatically change the scale of the y-axis for loss to logarithmic when the current loss drops below one 50th of its
starting value

	extra_detail (bool) – Whether to include extra detail plots (loss velocity and training validation ratio), slight slower but potentially useful.

	plot_settings (PlotSettings) – PlotSettings class to control figure appearance

	Examples::
	>>> metric_log = MetricLogger(loss_names=['Train', 'Validation'], n_folds=train_fy.n_folds)
>>> val_losses = []
>>> metric_log.reset() # Initialises plots and variables
>>> for epoch in epochs:
>>> for fold in train_folds:
>>> # train for one fold (subepoch)
>>> metric_log.update_vals([train_loss, val_loss], best=best_val_loss)
>>> metric_log.update_plot()
>>> plt.clf()

	
add_loss_name(name)

	Adds an additional loss name to the loss names displayed. The associated losses will be set to zero for any prior subepochs which have elapsed already.

	Parameters

	name (str) – name of loss to be added

	Return type

	None

	
reset()

	Resets/initialises the logger’s values and plots, and produces a placeholder plot. Should be called prior to update_vals or update_plot.

	Return type

	None

	
update_plot(best=None)

	Updates the plot(s), Optionally showing the user-chose best loss achieved.

	Parameters

	best (Optional[float]) – the value of the best loss achieved so far

	Return type

	None

	
update_vals(vals)

	Appends values to the losses. This is interpreted as one subepoch having elapsed (i.e. one training fold).

	Parameters

	vals (List[float]) – loss values from the last subepoch in the order of loss_names

	Return type

	None

Module contents

lumin.optimisation package

Submodules

lumin.optimisation.features module

	
lumin.optimisation.features.get_rf_feat_importance(rf, inputs, targets, weights=None)

	Compute feature importance for a Random Forest model using rfpimp.

	Parameters

	
	rf (Union[RandomForestRegressor, RandomForestClassifier]) – trained Random Forest model

	inputs (DataFrame) – input data as Pandas DataFrame

	targets (ndarray) – target data as Numpy array

	weights (Optional[ndarray]) – Optional data weights as Numpy array

	Return type

	DataFrame

	
lumin.optimisation.features.rf_rank_features(train_df, val_df, objective, train_feats, targ_name='gen_target', wgt_name=None, importance_cut=0.0, n_estimators=40, rf_params=None, optimise_rf=True, n_rfs=1, n_max_display=30, plot_results=True, retrain_on_import_feats=True, verbose=True, savename=None, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Compute relative permutation importance of input features via using Random Forests.
A reduced set of ‘important features’ is obtained by cutting on relative importance and a new model is trained and evaluated on this reduced set.
RFs will have their hyper-parameters roughly optimised, both when training on all features and once when training on important features.
Relative importances may be computed multiple times (via n_rfs) and averaged. In which case the standard error is also computed.

	Parameters

	
	train_df (DataFrame) – training data as Pandas DataFrame

	val_df (DataFrame) – validation data as Pandas DataFrame

	objective (str) – string representation of objective: either ‘classification’ or ‘regression’

	train_feats (List[str]) – complete list of training features

	targ_name (str) – name of column containing target data

	wgt_name (Optional[str]) – name of column containing weight data. If set, will use weights for training and evaluation, otherwise will not

	importance_cut (float) – minimum importance required to be considered an ‘important feature’

	n_estimators (int) – number of trees to use in each forest

	rf_params (Optional[Dict[str, Any]]) – optional dictionary of keyword parameters for SK-Learn Random Forests
Or ordered dictionary mapping parameters to optimise to list of values to consider
If None and will optimise parameters using lumin.optimisation.hyper_param.get_opt_rf_params()

	optimise_rf (bool) – if true will optimise RF params, passing rf_params to get_opt_rf_params()

	n_rfs (int) – number of trainings to perform on all training features in order to compute importances

	n_max_display (int) – maximum number of features to display in importance plot

	plot_results (bool) – whether to plot the feature importances

	retrain_on_import_feats (bool) – whether to train a new model on important features to compare to full model

	verbose (bool) – whether to report results and progress

	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances

	plot_settings (PlotSettings) – PlotSettings class to control figure appearance

	Return type

	List[str]

	Returns

	List of features passing importance_cut, ordered by decreasing importance

	
lumin.optimisation.features.rf_check_feat_removal(train_df, objective, train_feats, check_feats, targ_name='gen_target', wgt_name=None, val_df=None, subsample_rate=None, strat_key=None, n_estimators=40, n_rfs=1, rf_params=None)

	Checks whether features can be removed from the set of training features without degrading model performance using Random Forests
Computes scores for model with all training features then for each feature listed in check_feats computes scores for a model trained on all training
features except that feature
E.g. if two features are highly correlated this function could be used to check whether one of them could be removed.

	Parameters

	
	train_df (DataFrame) – training data as Pandas DataFrame

	objective (str) – string representation of objective: either ‘classification’ or ‘regression’

	train_feats (List[str]) – complete list of training features

	check_feats (List[str]) – list of features to try removing

	targ_name (str) – name of column containing target data

	wgt_name (Optional[str]) – name of column containing weight data. If set, will use weights for training and evaluation, otherwise will not

	val_df (Optional[DataFrame]) – optional validation data as Pandas DataFrame.
If set will compute validation scores in addition to Out Of Bag scores
And will optimise RF parameters if rf_params is None

	subsample_rate (Optional[float]) – if set, will subsample the training data to the provided fraction. Subsample is repeated per Random Forest training

	strat_key (Optional[str]) – column name to use for stratified subsampling, if desired

	n_estimators (int) – number of trees to use in each forest

	n_rfs (int) – number of trainings to perform on all training features in order to compute importances

	rf_params (Optional[Dict[str, Any]]) – optional dictionary of keyword parameters for SK-Learn Random Forests
If None and val_df is None will use default parameters of ‘min_samples_leaf’:3, ‘max_features’:0.5
Elif None and val_df is not None will optimise parameters using lumin.optimisation.hyper_param.get_opt_rf_params()

	Return type

	Dict[str, float]

	Returns

	Dictionary of results

	
lumin.optimisation.features.repeated_rf_rank_features(train_df, val_df, n_reps, min_frac_import, objective, train_feats, targ_name='gen_target', wgt_name=None, strat_key=None, subsample_rate=None, resample_val=True, importance_cut=0.0, n_estimators=40, rf_params=None, optimise_rf=True, n_rfs=1, n_max_display=30, n_threads=1, savename=None, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Runs rf_rank_features() multiple times on bootstrap resamples of training data and computes the fraction of times each
feature passes the importance cut.
Then returns a list features which are have a fractional selection as important great than some number.
I.e. in cases where rf_rank_features() can be unstable (list of important features changes each run), this method can be
used to help stabailse the list of important features

	Parameters

	
	train_df (DataFrame) – training data as Pandas DataFrame

	val_df (DataFrame) – validation data as Pandas DataFrame

	n_reps (int) – number of times to resample and run rf_rank_features()

	min_frac_import (float) – minimum fraction of times feature must be selected as important by rf_rank_features() in order to be
considered generally important

	objective (str) – string representation of objective: either ‘classification’ or ‘regression’

	train_feats (List[str]) – complete list of training features

	targ_name (str) – name of column containing target data

	wgt_name (Optional[str]) – name of column containing weight data. If set, will use weights for training and evaluation, otherwise will not

	strat_key (Optional[str]) – name of column to use to stratify data when resampling

	subsample_rate (Optional[float]) – if set, will subsample the training data to the provided fraction. Subsample is repeated per Random Forest training

	resample_val (bool) – whether to also resample the validation set, or use the original set for all evaluations

	importance_cut (float) – minimum importance required to be considered an ‘important feature’

	n_estimators (int) – number of trees to use in each forest

	rf_params (Optional[Dict[str, Any]]) – optional dictionary of keyword parameters for SK-Learn Random Forests
Or ordered dictionary mapping parameters to optimise to list of values to consider
If None and will optimise parameters using lumin.optimisation.hyper_param.get_opt_rf_params()

	optimise_rf (bool) – if true will optimise RF params, passing rf_params to get_opt_rf_params()

	n_rfs (int) – number of trainings to perform on all training features in order to compute importances

	n_max_display (int) – maximum number of features to display in importance plot

	n_threads (int) – number of rankings to run simultaneously

	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances

	plot_settings (PlotSettings) – PlotSettings class to control figure appearance

	Return type

	Tuple[List[str], DataFrame]

	Returns

	
	List of features with fractional selection greater than min_frac_import, ordered by decreasing fractional selection

	DataFrame of number of selections and fractional selections for all features

	
lumin.optimisation.features.auto_filter_on_linear_correlation(train_df, val_df, check_feats, objective, targ_name, strat_key=None, wgt_name=None, corr_threshold=0.8, n_estimators=40, rf_params=None, optimise_rf=True, n_rfs=5, subsample_rate=None, savename=None, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Filters a list of possible training features by identifying pairs of linearly correlated features and then attempting to remove either feature from each
pair by checking whether doing so would not decrease the performance Random Forests trained to perform classification or regression.

Linearly correlated features are identified by computing Spearman’s rank-order correlation coefficients for every pair of features. Hierachical clustering
is then used to group features. Clusters of features with a correlation coefficient greater than a set threshold are candidates for removal.
Candidate sets of features are tested, in order of decreasing correlation, by computing the mean performance of a Random Forests trained on all remaining
training features and all remaining training features except each feature in the set in turn.
If the RF trained on all remaining features consistently outperforms the other trainings, then no feature from the set is removed, otherwise the
feature whose removal causes the largest mean increase in performance is removed. This test is then repeated on the remaining features in the set, until
either no features are removed, or only one feature remains.

Since this function involves training many models, it can be slow on large datasets. In such cases one can use the subsample_rate argument to sample
randomly a fraction of the whole dataset (with optionaly stratification). Resampling is performed prior to each RF training for maximum genralisation, and
any weights in the data are automatically renormalised to the original weight sum (within each class).

Attention

This function combines plot_rank_order_dendrogram() with
rf_check_feat_removal(). This is purely for convenience and should not be treated as a ‘black box’. We encourage users to
convince themselves that it is really is reasonable to remove the features which are identified as redundant.

	Parameters

	
	train_df (DataFrame) – training data as Pandas DataFrame

	val_df (DataFrame) – validation data as Pandas DataFrame

	check_feats (List[str]) – complete list of features to consider for training and removal

	objective (str) – string representation of objective: either ‘classification’ or ‘regression’

	targ_name (str) – name of column containing target data

	strat_key (Optional[str]) – name of column to use to stratify data when resampling

	wgt_name (Optional[str]) – name of column containing weight data. If set, will use weights for training and evaluation, otherwise will not

	corr_threshold (float) – minimum threshold on Spearman’s rank-order correlation coefficient for pairs to be considered ‘correlated’

	n_estimators (int) – number of trees to use in each forest

	rf_params (Optional[Dict[~KT, ~VT]]) – either: a dictionare of keyword hyper-parameters to use for the Random Forests, if optimse_rf is False;
or an OrderedDict of a range of hyper-parameters to test during optimisation. See get_opt_rf_params() for
more details.

	optimise_rf (bool) – whether to optimise the Random Forest hyper-parameters for the (sub-sambled) dataset

	n_rfs (int) – number of trainings to perform during each perfromance impact test

	subsample_rate (Optional[float]) – float between 0 and 1. If set will subsample the trainng data to the requested fraction

	savename (Optional[str]) – Optional name of file to which to save the first plot of feature clustering

	plot_settings (PlotSettings) – PlotSettings class to control figure appearance

	Return type

	List[str]

	Returns

	Filtered list of training features

	
lumin.optimisation.features.auto_filter_on_mutual_dependence(train_df, val_df, check_feats, objective, targ_name, strat_key=None, wgt_name=None, md_threshold=0.8, n_estimators=40, rf_params=None, optimise_rf=True, n_rfs=5, subsample_rate=None, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Filters a list of possible training features via mutual dependence: By identifying features whose values can be accurately predicted using the other
features. Features with a high ‘dependence’ are then checked to see whether removing them would not decrease the performance Random Forests trained to
perform classification or regression. For best results, the features to check should be supplied in order to decreasing importance.

Dependent features are identified by training Random Forest regressors on the other features. Features with a dependence greater than a set threshold are
candidates for removal. Candidate features are tested, in order of increasing importance, by computing the mean performance of a Random Forests trained on:
all remaining training features; and all remaining training features except the candidate feature.
If the RF trained on all remaining features except the candidate feature consistently outperforms or matches the training which uses all remaining features,
then the candidate feature is removed, otherwise the feature remains and is no longer tested.

Since evaluating the mutual dependence via regression then allows the important features used by the regressor to be identified, it is possible to test
multiple feature removals at once, provided a removal candidate is not important for predicting another removal candidate.

Since this function involves training many models, it can be slow on large datasets. In such cases one can use the subsample_rate argument to sample
randomly a fraction of the whole dataset (with optionaly stratification). Resampling is performed prior to each RF training for maximum genralisation, and
any weights in the data are automatically renormalised to the original weight sum (within each class).

Attention

This function combines RFPImp’s feature_dependence_matrix with rf_check_feat_removal().
This is purely for convenience and should not be treated as a ‘black box’. We encourage users to convince themselves that it is really is reasonable to
remove the features which are identified as redundant.

Note

Technicalities related to RFPImp’s use of SVG for plots mean that the mutual dependence plots can have low resolution when shown or saved.
Therefore this function does not take a savename argument. Users wiching to save the plots as PNG or PDF should compute the dependence matrix themselves
using feature_dependence_matrix and then plot using plot_dependence_heatmap, calling .save([savename]) on the retunred object. The plotting backend
might need to be set to SVG, using: %config InlineBackend.figure_format = ‘svg’.

	Parameters

	
	train_df (DataFrame) – training data as Pandas DataFrame

	val_df (DataFrame) – validation data as Pandas DataFrame

	check_feats (List[str]) – complete list of features to consider for training and removal

	objective (str) – string representation of objective: either ‘classification’ or ‘regression’

	targ_name (str) – name of column containing target data

	strat_key (Optional[str]) – name of column to use to stratify data when resampling

	wgt_name (Optional[str]) – name of column containing weight data. If set, will use weights for training and evaluation, otherwise will not

	md_threshold (float) – minimum threshold on the mutual dependence coefficient for a feature to be considered ‘predictable’

	n_estimators (int) – number of trees to use in each forest

	rf_params (Optional[OrderedDict]) – either: a dictionare of keyword hyper-parameters to use for the Random Forests, if optimse_rf is False;
or an OrderedDict of a range of hyper-parameters to test during optimisation. See get_opt_rf_params() for
more details.

	optimise_rf (bool) – whether to optimise the Random Forest hyper-parameters for the (sub-sambled) dataset

	n_rfs (int) – number of trainings to perform during each perfromance impact test

	subsample_rate (Optional[float]) – float between 0 and 1. If set will subsample the trainng data to the requested fraction

	plot_settings (PlotSettings) – PlotSettings class to control figure appearance

	Return type

	List[str]

	Returns

	Filtered list of training features

lumin.optimisation.hyper_param module

	
lumin.optimisation.hyper_param.get_opt_rf_params(x_trn, y_trn, x_val, y_val, objective, w_trn=None, w_val=None, params=None, n_estimators=40, verbose=True)

	Use an ordered parameter-scan to roughly optimise Random Forest hyper-parameters.

	Parameters

	
	x_trn (ndarray) – training input data

	y_trn (ndarray) – training target data

	x_val (ndarray) – validation input data

	y_val (ndarray) – validation target data

	objective (str) – string representation of objective: either ‘classification’ or ‘regression’

	w_trn (Optional[ndarray]) – training weights

	w_val (Optional[ndarray]) – validation weights

	params (Optional[OrderedDict]) – ordered dictionary mapping parameters to optimise to list of values to cosnider

	n_estimators (int) – number of trees to use in each forest

	verbose – Print extra information and show a live plot of model performance

	Returns

	dictionary mapping parameters to their optimised values
rf: best performing Random Forest

	Return type

	params

	
lumin.optimisation.hyper_param.fold_lr_find(fy, model_builder, bs, train_on_weights=True, shuffle_fold=True, n_folds=-1, lr_bounds=[1e-05, 10], callback_partials=None, plot_settings=<lumin.plotting.plot_settings.PlotSettings object>, bulk_move=True, plot_savename=None)

	Wrapper function for training using LRFinder which runs a Smith LR range test (https://arxiv.org/abs/1803.09820)
using folds in FoldYielder.
Trains models for 1 fold, interpolating LR between set bounds. This repeats for each fold in FoldYielder, and loss
evolution is averaged.

	Parameters

	
	fy (FoldYielder) – FoldYielder providing training data

	model_builder (ModelBuilder) – ModelBuilder providing networks and optimisers

	bs (int) – batch size

	train_on_weights (bool) – If weights are present, whether to use them for training

	shuffle_fold (bool) – whether to shuffle data in folds

	n_folds (int) – if >= 1, will only train n_folds number of models, otherwise will train one model per fold

	lr_bounds (Tuple[float, float]) – starting and ending LR values

	callback_partials (Optional[List[partial]]) – optional list of functools.partial, each of which will a instantiate Callback when called

	plot_settings (PlotSettings) – PlotSettings class to control figure appearance

	savename – Optional name of file to which to save the plot

	Return type

	List[LRFinder]

	Returns

	List of LRFinder which were used for each model trained

lumin.optimisation.threshold module

	
lumin.optimisation.threshold.binary_class_cut_by_ams(df, top_perc=5.0, min_pred=0.9, wgt_factor=1.0, br=0.0, syst_unc_b=0.0, pred_name='pred', targ_name='gen_target', wgt_name='gen_weight', plot_settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Optimise a cut on a signal-background classifier prediction by the Approximate Median Significance
Cut which should generalise better by taking the mean class prediction of the top top_perc percentage of points as ranked by AMS

	Parameters

	
	df (DataFrame) – Pandas DataFrame containing data

	top_perc (float) – top percentage of events to consider as ranked by AMS

	min_pred (float) – minimum prediction to consider

	wgt_factor (float) – single multiplicative coeficient for rescaling signal and background weights before computing AMS

	br (float) – background offset bias

	syst_unc_b (float) – fractional systemtatic uncertainty on background

	pred_name (str) – column to use as predictions

	targ_name (str) – column to use as truth labels for signal and background

	wgt_name (str) – column to use as weights for signal and background events

	plot_settings (PlotSettings) – PlotSettings class to control figure appearance

	Return type

	Tuple[float, float, float]

	Returns

	Optimised cut
AMS at cut
Maximum AMS

Module contents

lumin.plotting package

Submodules

lumin.plotting.data_viewing module

	
lumin.plotting.data_viewing.plot_feat(df, feat, wgt_name=None, cuts=None, labels='', plot_bulk=True, n_samples=100000, plot_params=None, size='mid', show_moments=True, ax_labels={'x': None, 'y': 'Density'}, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	A flexible function to provide indicative information about the 1D distribution of a feature.
By default it will produce a weighted KDE+histogram for the [1,99] percentile of the data,
as well as compute the mean and standard deviation of the data in this region.
Distributions are weighted by sampling with replacement the data with probabilities propotional to the sample weights.
By passing a list of cuts and labels, it will plot multiple distributions of the same feature for different cuts.
Since it is designed to provide quick, indicative information, more specific functions (such as plot_kdes_from_bs)
should be used to provide final results.

Important

NaN and Inf values are removed prior to plotting and no attempt is made to coerce them to real numbers

	Parameters

	
	df (DataFrame) – Pandas DataFrame containing data

	feat (str) – column name to plot

	wgt_name (Optional[str]) – if set, will use column to weight data

	cuts (Optional[List[Series]]) – optional list of cuts to apply to feature. Will add one KDE+hist for each cut listed on the same plot

	labels (Optional[List[str]]) – optional list of labels for each KDE+hist

	plot_bulk (bool) – whether to plot the [1,99] percentile of the data, or all of it

	n_samples (int) – if plotting weighted distributions, how many samples to use

	plot_params (Union[Dict[str, Any], List[Dict[str, Any]], None]) – optional list of of arguments to pass to Seaborn Distplot for each KDE+hist

	size (str) – string to pass to str2sz() to determin size of plot

	show_moments (bool) – whether to compute and display the mean and standard deviation

	ax_labels (Dict[str, Any]) – dictionary of x and y axes labels

	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances

	settings (PlotSettings) – PlotSettings class to control figure appearance

	Return type

	None

	
lumin.plotting.data_viewing.compare_events(events)

	Plots at least two events side by side in their transverse and longitudinal projections

	Parameters

	events (list) – list of DataFrames containing vector coordinates for 3 momenta

	Return type

	None

	
lumin.plotting.data_viewing.plot_rank_order_dendrogram(df, threshold=0.8, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Plots a dendrogram of features in df clustered via Spearman’s rank correlation coefficient.
Also returns a sets of features with correlation coefficients greater than the threshold

	Parameters

	
	df (DataFrame) – Pandas DataFrame containing data

	threshold (float) – Threshold on correlation coefficient

	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances

	settings (PlotSettings) – PlotSettings class to control figure appearance

	Return type

	Dict[str, Union[List[str], float]]

	Returns

	Dict of sets of features with correlation coefficients greater than the threshold and cluster distance

	
lumin.plotting.data_viewing.plot_kdes_from_bs(x, bs_stats, name2args, feat, units=None, moments=True, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Plots KDEs computed via bootstrap_stats()

	Parameters

	
	bs_stats (Dict[str, Any]) – (filtered) dictionary retruned by bootstrap_stats()

	name2args (Dict[str, Dict[str, Any]]) – Dictionary mapping names of different distributions to arguments to pass to seaborn tsplot

	feat (str) – Name of feature being plotted (for axis lablels)

	units (Optional[str]) – Optional units to show on axes

	moments – whether to display mean and standard deviation of each distribution

	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances

	settings (PlotSettings) – PlotSettings class to control figure appearance

	Return type

	None

	
lumin.plotting.data_viewing.plot_binary_sample_feat(df, feat, targ_name='gen_target', wgt_name='gen_weight', sample_name='gen_sample', wgt_scale=1, bins=None, log_y=False, lim_x=None, density=True, feat_name=None, units=None, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	More advanced plotter for feature distributions in a binary class problem with stacked distributions for backgrounds and user-defined binning
Note that plotting colours can be controled by seeting the settings.sample2col dictionary

	Parameters

	
	df (DataFrame) – DataFrame with targets and predictions

	feat (str) – name of column to plot the distribution of

	targ_name (str) – name of column to use as targets

	wgt_name (str) – name of column to use as sample weights

	sample_name (str) – name of column to use as process names

	wgt_scale (float) – applies a global multiplicative rescaling to sample weights. Default 1 = no rescaling. Only applicable when density = False

	bins (Union[int, List[int], None]) – either the number of bins to use for a uniform binning, or a list of bin edges for a variable-width binning

	log_y (bool) – whether to use a log scale for the y-axis

	lim_x (Optional[Tuple[float, float]]) – limit for plotting on the x-axis

	density – whether to normalise each distribution to one, or keep set to sum of weights / datapoints

	feat_name (Optional[str]) – Name of feature to put on x-axis, can be in LaTeX.

	units (Optional[str]) – units used to measure feature, if applicable. Can be in LaTeX, but should not include ‘$’.

	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances

	settings (PlotSettings) – PlotSettings class to control figure appearance

	Return type

	None

lumin.plotting.interpretation module

	
lumin.plotting.interpretation.plot_importance(df, feat_name='Feature', imp_name='Importance', unc_name='Uncertainty', threshold=None, x_lbl='Importance via feature permutation', savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Plot feature importances as computted via get_nn_feat_importance, get_ensemble_feat_importance, or rf_rank_features

	Parameters

	
	df (DataFrame) – DataFrame containing columns of features, importances and, optionally, uncertainties

	feat_name (str) – column name for features

	imp_name (str) – column name for importances

	unc_name (str) – column name for uncertainties (if present)

	threshold (Optional[float]) – if set, will draw a line at the threshold hold used for feature importance

	x_lbl (str) – label to put on the x-axis

	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances

	settings (PlotSettings) – PlotSettings class to control figure appearance

	Return type

	None

	
lumin.plotting.interpretation.plot_embedding(embed, feat, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Visualise weights in provided categorical entity-embedding matrix

	Parameters

	
	embed (OrderedDict) – state_dict of trained nn.Embedding

	feat (str) – name of feature embedded

	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances

	settings (PlotSettings) – PlotSettings class to control figure appearance

	Return type

	None

	
lumin.plotting.interpretation.plot_1d_partial_dependence(model, df, feat, train_feats, ignore_feats=None, input_pipe=None, sample_sz=None, wgt_name=None, n_clusters=10, n_points=20, pdp_isolate_kargs=None, pdp_plot_kargs=None, y_lim=None, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Wrapper for PDPbox to plot 1D dependence of specified feature using provided NN or RF.
If features have been preprocessed using an SK-Learn Pipeline, then that can be passed in order to rescale the x-axis back to its original values.

	Parameters

	
	model (Any) – any trained model with a .predict method

	df (DataFrame) – DataFrame containing training data

	feat (str) – feature for which to evaluate the partial dependence of the model

	train_feats (List[str]) – list of all training features including ones which were later ignored, i.e. input features considered when input_pipe was fitted

	ignore_feats (Optional[List[str]]) – features present in training data which were not used to train the model (necessary to correctly deprocess feature using input_pipe)

	input_pipe (Optional[Pipeline]) – SK-Learn Pipeline which was used to process the training data

	sample_sz (Optional[int]) – if set, will only compute partial dependence on a random sample with replacement of the training data, sampled according to weights (if set).
Speeds up computation and allows weighted partial dependencies to computed.

	wgt_name (Optional[str]) – Optional column name to use as sampling weights

	n_points (int) – number of points at which to evaluate the model output, passed to pdp_isolate as num_grid_points

	n_clusters (Optional[int]) – number of clusters in which to group dependency lines. Set to None to show all lines

	pdp_isolate_kargs (Optional[Dict[str, Any]]) – optional dictionary of keyword arguments to pass to pdp_isolate

	pdp_plot_kargs (Optional[Dict[str, Any]]) – optional dictionary of keyword arguments to pass to pdp_plot

	y_lim (Union[Tuple[float, float], List[float], None]) – If set, will limit y-axis plot range to tuple

	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances

	settings (PlotSettings) – PlotSettings class to control figure appearance

	Return type

	None

	
lumin.plotting.interpretation.plot_2d_partial_dependence(model, df, feats, train_feats, ignore_feats=None, input_pipe=None, sample_sz=None, wgt_name=None, n_points=[20, 20], pdp_interact_kargs=None, pdp_interact_plot_kargs=None, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Wrapper for PDPbox to plot 2D dependence of specified pair of features using provided NN or RF.
If features have been preprocessed using an SK-Learn Pipeline, then that can be passed in order to rescale them back to their original values.

	Parameters

	
	model (Any) – any trained model with a .predict method

	df (DataFrame) – DataFrame containing training data

	feats (Tuple[str, str]) – pair of features for which to evaluate the partial dependence of the model

	train_feats (List[str]) – list of all training features including ones which were later ignored, i.e. input features considered when input_pipe was fitted

	ignore_feats (Optional[List[str]]) – features present in training data which were not used to train the model (necessary to correctly deprocess feature using input_pipe)

	input_pipe (Optional[Pipeline]) – SK-Learn Pipeline which was used to process the training data

	sample_sz (Optional[int]) – if set, will only compute partial dependence on a random sample with replacement of the training data, sampled according to weights (if set).
Speeds up computation and allows weighted partial dependencies to computed.

	wgt_name (Optional[str]) – Optional column name to use as sampling weights

	n_points (Tuple[int, int]) – pair of numbers of points at which to evaluate the model output, passed to pdp_interact as num_grid_points

	n_clusters – number of clusters in which to group dependency lines. Set to None to show all lines

	pdp_isolate_kargs – optional dictionary of keyword arguments to pass to pdp_isolate

	pdp_plot_kargs – optional dictionary of keyword arguments to pass to pdp_plot

	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances

	settings (PlotSettings) – PlotSettings class to control figure appearance

	Return type

	None

	
lumin.plotting.interpretation.plot_multibody_weighted_outputs(model, inputs, block_names=None, use_mean=False, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Interpret how a model relies on the outputs of each block in a :class:MultiBlock by plotting the outputs of each block as weighted by the tail block.
This function currently only supports models whose tail block contains a single neuron in the first dense layer.
Input data is passed through the model and the absolute sums of the weighted block outputs are computed per datum, and optionally averaged over the number
of block outputs.

	Parameters

	
	model (AbsModel) – model to interpret

	inputs (Union[ndarray, Tensor]) – input data to use for interpretation

	block_names (Optional[List[str]]) – names for each block to use when plotting

	use_mean (bool) – if True, will average the weighted outputs over the number of output neurons in each block

	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances

	settings (PlotSettings) – PlotSettings class to control figure appearance

	Return type

	None

	
lumin.plotting.interpretation.plot_bottleneck_weighted_inputs(model, bottleneck_idx, inputs, log_y=True, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Interpret how a single-neuron bottleneck in a :class:MultiBlock relies on input features by plotting the absolute values of the features times their
associated weight for a given set of input data.

	Parameters

	
	model (AbsModel) – model to interpret

	bottleneck_idx (int) – index of the bottleneck to interpret, i.e. model.body.bottleneck_blocks[bottleneck_idx]

	inputs (Union[ndarray, Tensor]) – input data to use for interpretation

	log_y (bool) – whether to plot a log scale for the y-axis

	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances

	settings (PlotSettings) – PlotSettings class to control figure appearance

	Return type

	None

lumin.plotting.plot_settings module

	
class lumin.plotting.plot_settings.PlotSettings(**kargs)

	Bases: object

Class to provide control over plot appearances. Default parameters are set automatically, and can be adjusted by passing values as keyword arguments during
initialisation (or changed after instantiation)

	Parameters

	arguments (keyword) – used to set relevant plotting parameters

	
str2sz(sz, ax)

	Used to map requested plot sizes to actual dimensions

	Parameters

	
	sz (str) – string representation of size

	ax (str) – axis dimension requested

	Return type

	float

	Returns

	width of plot dimension

lumin.plotting.results module

	
lumin.plotting.results.plot_roc(data, pred_name='pred', targ_name='gen_target', wgt_name=None, labels=None, plot_params=None, n_bootstrap=0, log_x=False, plot_baseline=True, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Plot receiver operating characteristic curve(s), optionally using booststrap resampling

	Parameters

	
	data (Union[DataFrame, List[DataFrame]]) – (list of) DataFrame(s) from which to draw predictions and targets

	pred_name (str) – name of column to use as predictions

	targ_name (str) – name of column to use as targets

	wgt_name (Optional[str]) – optional name of column to use as sample weights

	labels (Union[str, List[str], None]) – (list of) label(s) for plot legend

	plot_params (Union[Dict[str, Any], List[Dict[str, Any]], None]) – (list of) dictionar[y/ies] of argument(s) to pass to line plot

	n_bootstrap (int) – if greater than 0, will bootstrap resample the data that many times when computing the ROC AUC. Currently, this does not affect the shape
of the lines, which are based on computing the ROC for the entire dataset as is.

	log_x (bool) – whether to use a log scale for plotting the x-axis, useful for high AUC line

	plot_baseline (bool) – whether to plot a dotted line for AUC=0.5. Currently incompatable with log_x=True

	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances

	settings (PlotSettings) – PlotSettings class to control figure appearance

	Return type

	Dict[str, Union[float, Tuple[float, float]]]

	Returns

	Dictionary mapping data labels to aucs (and uncertainties if n_bootstrap > 0)

	
lumin.plotting.results.plot_binary_class_pred(df, pred_name='pred', targ_name='gen_target', wgt_name=None, wgt_scale=1, log_y=False, lim_x=(0, 1), density=True, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Basic plotter for prediction distribution in a binary classification problem.
Note that labels are set using the settings.targ2class dictionary, which by default is {0: ‘Background’, 1: ‘Signal’}.

	Parameters

	
	df (DataFrame) – DataFrame with targets and predictions

	pred_name (str) – name of column to use as predictions

	targ_name (str) – name of column to use as targets

	wgt_name (Optional[str]) – optional name of column to use as sample weights

	wgt_scale (float) – applies a global multiplicative rescaling to sample weights. Default 1 = no rescaling

	log_y (bool) – whether to use a log scale for the y-axis

	lim_x (Tuple[float, float]) – limit for plotting on the x-axis

	density – whether to normalise each distribution to one, or keep set to sum of weights / datapoints

	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances

	settings (PlotSettings) – PlotSettings class to control figure appearance

	Return type

	None

	
lumin.plotting.results.plot_sample_pred(df, pred_name='pred', targ_name='gen_target', wgt_name='gen_weight', sample_name='gen_sample', wgt_scale=1, bins=35, log_y=True, lim_x=(0, 1), density=False, zoom_args=None, savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	More advanced plotter for prediction distribution in a binary class problem with stacked distributions for backgrounds and user-defined binning
Can also zoom in to specified parts of plot
Note that plotting colours can be controled by seeting the settings.sample2col dictionary

	Parameters

	
	df (DataFrame) – DataFrame with targets and predictions

	pred_name (str) – name of column to use as predictions

	targ_name (str) – name of column to use as targets

	wgt_name (str) – name of column to use as sample weights

	sample_name (str) – name of column to use as process names

	wgt_scale (float) – applies a global multiplicative rescaling to sample weights. Default 1 = no rescaling

	bins (Union[int, List[int]]) – either the number of bins to use for a uniform binning, or a list of bin edges for a variable-width binning

	log_y (bool) – whether to use a log scale for the y-axis

	lim_x (Tuple[float, float]) – limit for plotting on the x-axis

	density – whether to normalise each distribution to one, or keep set to sum of weights / datapoints

	zoom_args (Optional[Dict[str, Any]]) – arguments to control the optional zoomed in section,
e.g. {‘x’:(0.4,0.45), ‘y’:(0.2, 1500), ‘anchor’:(0,0.25,0.95,1), ‘width_scale’:1, ‘width_zoom’:4, ‘height_zoom’:3}

	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances

	settings (PlotSettings) – PlotSettings class to control figure appearance

	Return type

	None

lumin.plotting.training module

	
lumin.plotting.training.plot_train_history(histories, savename=None, ignore_trn=True, settings=<lumin.plotting.plot_settings.PlotSettings object>, show=True, xlow=0, log_y=False)

	Plot histories object returned by fold_train_ensemble() showing the loss evolution over time per model trained.

	Parameters

	
	histories (List[Dict[str, List[float]]]) – list of dictionaries mapping loss type to values at each (sub)-epoch

	savename (Optional[str]) – Optional name of file to which to save the plot of feature importances

	ignore_trn (bool) – whether to ignore training loss

	settings (PlotSettings) – PlotSettings class to control figure appearance

	show (bool) – whether or not to show the plot, or just save it

	Return type

	None

	
lumin.plotting.training.plot_lr_finders(lr_finders, lr_range=None, loss_range='auto', log_y='auto', savename=None, settings=<lumin.plotting.plot_settings.PlotSettings object>)

	Plot mean loss evolution against learning rate for several fold_lr_find.

	Parameters

	
	lr_finders (List[LRFinder]) – list of fold_lr_find)

	lr_range (Union[float, Tuple, None]) – limits the range of learning rates plotted on the x-axis: if float, maximum LR; if tuple, minimum & maximum LR

	loss_range (Union[float, Tuple, str, None]) – limits the range of losses plotted on the x-axis:
if float, maximum loss;
if tuple, minimum & maximum loss;
if None, no limits;
if ‘auto’, computes an upper limit automatically

	log_y (Union[str, bool]) – whether to plot y-axis as log. If ‘auto’, will set to log if maximal fractional difference in loss values is greater than 50

	savename (Optional[str]) – Optional name of file to which to save the plot

	settings (PlotSettings) – PlotSettings class to control figure appearance

	Return type

	None

Module contents

lumin.utils package

Submodules

lumin.utils.data module

	
lumin.utils.data.check_val_set(train, val, test=None, n_folds=None)

	Method to check validation set suitability by seeing whether Random Forests can predict whether events belong to one dataset or another.
If a FoldYielder is passed, then trainings are run once per fold and averaged.
Will compute the ROC AUC for set discrimination (should be close to 0.5) and compute the feature importances to aid removal of discriminating features.

	Parameters

	
	train (Union[DataFrame, ndarray, FoldYielder]) – training data

	val (Union[DataFrame, ndarray, FoldYielder]) – validation data

	test (Union[DataFrame, ndarray, FoldYielder, None]) – optional testing data

	n_folds (Optional[int]) – if set and if passed a FoldYielder, will only use the first n_folds folds

	Return type

	None

lumin.utils.misc module

	
lumin.utils.misc.to_np(x)

	Convert Tensor x to a Numpy array

	Parameters

	x (Tensor) – Tensor to convert

	Return type

	ndarray

	Returns

	x as a Numpy array

	
lumin.utils.misc.to_device(x, device=device(type='cpu'))

	Recursively place Tensor(s) onto device

	Parameters

	x (Union[Tensor, List[Tensor]]) – Tensor(s) to place on device

	Return type

	Union[Tensor, List[Tensor]]

	Returns

	Tensor(s) on device

	
lumin.utils.misc.to_tensor(x)

	Convert Numpy array to Tensor with possibility of a None being passed

	Parameters

	x (Optional[ndarray]) – Numpy array or None

	Return type

	Optional[Tensor]

	Returns

	x as Tensor or None

	
lumin.utils.misc.str2bool(string)

	Convert string representation of Boolean to bool

	Parameters

	string (Union[str, bool]) – string representation of Boolean (or a Boolean)

	Return type

	bool

	Returns

	bool if bool was passed else, True if lowercase string matches is in (“yes”, “true”, “t”, “1”)

	
lumin.utils.misc.to_binary_class(df, zero_preds, one_preds)

	Map class precitions back to a binary prediction.
The maximum prediction for features listed in zero_preds is treated as the prediction for class 0, vice versa for one_preds.
The binary prediction is added to df in place as column ‘pred’

	Parameters

	
	df (DataFrame) – DataFrame containing prediction features

	zero_preds (List[str]) – list of column names for predictions associated with class 0

	one_preds (List[str]) – list of column names for predictions associated with class 0

	Return type

	None

	
lumin.utils.misc.ids2unique(ids)

	Map a permutaion of integers to a unique number, or a 2D array of integers to unique numbers by row.
Returned numbers are unique for a given permutation of integers.
This is achieved by computing the product of primes raised to powers equal to the integers. Beacause of this, it can be easy to produce numbers which are
too large to be stored if many (large) integers are passed.

	Parameters

	ids (Union[List[int], ndarray]) – (array of) permutation(s) of integers to map

	Return type

	ndarray

	Returns

	(Array of) unique id(s) for given permutation(s)

	
class lumin.utils.misc.FowardHook(module, hook_fn=None)

	Bases: object

Create a hook for performing an action based on the forward pass thorugh a nn.Module

	Parameters

	
	module – nn.Module to hook

	hook_fn – Optional function to perform. Default is to record input and output of module

	Examples::
	>>> hook = ForwardHook(model.tail.dense)
>>> model.predict(inputs)
>>> print(hook.inputs)

	
hook_fn(module, input, output)

	Default hook function records inputs and outputs of module

	Parameters

	
	module (Module) – nn.Module to hook

	input (Union[Tensor, Tuple[Tensor]]) – input tensor

	output (Union[Tensor, Tuple[Tensor]]) – output tensor of module

	Return type

	None

	
remove()

	Call when finished to remove hook

	Return type

	None

	
lumin.utils.misc.subsample_df(df, objective, targ_name, n_samples=None, replace=False, strat_key=None, wgt_name=None)

	Subsamples, or samples with replacement, a DataFrame.
Will automatically reweight data such that weight sums remain the same as the original DataFrame (per class)

	Parameters

	
	df (DataFrame) – DataFrame to sample

	objective (str) – string representation of objective: either ‘classification’ or ‘regression’

	targ_name (str) – name of column containing target data

	n_samples (Optional[int]) – If set, will sample that number of data points, otherwise will sample with replacement a new DataFRame of the same size as the original

	replace (bool) – whether to sample with replacement

	strat_key (Optional[str]) – column name to use for stratified subsampling, if desired

	wgt_name (Optional[str]) – name of column containing weight data. If set, will reweight subsampled data, otherwise will not

	Return type

	DataFrame

lumin.utils.multiprocessing module

	
lumin.utils.multiprocessing.mp_run(args, func)

	Run multiple instances of function simultaneously by using a list of argument dictionaries
Runs given function once per entry in args list.

Important

Function should put a dictionary of results into the mp.Queue and each result key should be unique otherwise they will overwrite one another.

	Parameters

	
	args (List[Dict[Any, Any]]) – list of dictionaries of arguments

	func (Callable[[Any], Any]) – function to which to pass dictionary arguments

	Return type

	Dict[Any, Any]

	Returns

	DIctionary of results

lumin.utils.statistics module

	
lumin.utils.statistics.bootstrap_stats(args, out_q=None)

	Computes statistics and KDEs of data via sampling with replacement

	Parameters

	
	args (Dict[str, Any]) – dictionary of arguments. Possible keys are:
data - data to resample
name - name prepended to returned keys in result dict
weights - array of weights matching length of data to use for weighted resampling
n - number of times to resample data
x - points at which to compute the kde values of resample data
kde - whether to compute the kde values at x-points for resampled data
mean - whether to compute the means of the resampled data
std - whether to compute standard deviation of resampled data
c68 - whether to compute the width of the absolute central 68.2 percentile of the resampled data

	out_q (Optional[<bound method BaseContext.Queue of <multiprocessing.context.DefaultContext object at 0x7ffb33b18a20>>]) – if using multiporcessing can place result dictionary in provided queue

	Return type

	Union[None, Dict[str, Any]]

	Returns

	Result dictionary if out_q is None else None.

	
lumin.utils.statistics.get_moments(arr)

	Computes mean and std of data, and their associated uncertainties

	Parameters

	arr (ndarray) – univariate data

	Return type

	Tuple[float, float, float, float]

	Returns

	
	mean

	statistical uncertainty of mean

	standard deviation

	statistical uncertainty of standard deviation

	
lumin.utils.statistics.uncert_round(value, uncert)

	Round value according to given uncertainty using one significant figure of the uncertainty

	Parameters

	
	value (float) – value to round

	uncert (float) – uncertainty of value

	Return type

	Tuple[float, float]

	Returns

	
	rounded value

	rounded uncertainty

Module contents

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 lumin	

 	
 	
 lumin.data_processing	

 	
 	
 lumin.data_processing.file_proc	

 	
 	
 lumin.data_processing.hep_proc	

 	
 	
 lumin.data_processing.pre_proc	

 	
 	
 lumin.evaluation	

 	
 	
 lumin.evaluation.ams	

 	
 	
 lumin.inference	

 	
 	
 lumin.inference.summary_stat	

 	
 	
 lumin.nn	

 	
 	
 lumin.nn.callbacks	

 	
 	
 lumin.nn.callbacks.callback	

 	
 	
 lumin.nn.callbacks.cyclic_callbacks	

 	
 	
 lumin.nn.callbacks.data_callbacks	

 	
 	
 lumin.nn.callbacks.loss_callbacks	

 	
 	
 lumin.nn.callbacks.lsuv_init	

 	
 	
 lumin.nn.callbacks.model_callbacks	

 	
 	
 lumin.nn.callbacks.opt_callbacks	

 	
 	
 lumin.nn.data	

 	
 	
 lumin.nn.data.batch_yielder	

 	
 	
 lumin.nn.data.fold_yielder	

 	
 	
 lumin.nn.ensemble	

 	
 	
 lumin.nn.ensemble.ensemble	

 	
 	
 lumin.nn.interpretation	

 	
 	
 lumin.nn.interpretation.features	

 	
 	
 lumin.nn.losses	

 	
 	
 lumin.nn.losses.basic_weighted	

 	
 	
 lumin.nn.losses.hep_losses	

 	
 	
 lumin.nn.metrics	

 	
 	
 lumin.nn.metrics.class_eval	

 	
 	
 lumin.nn.metrics.eval_metric	

 	
 	
 lumin.nn.metrics.reg_eval	

 	
 	
 lumin.nn.models	

 	
 	
 lumin.nn.models.blocks	

 	
 	
 lumin.nn.models.blocks.body	

 	
 	
 lumin.nn.models.blocks.conv_blocks	

 	
 	
 lumin.nn.models.blocks.endcap	

 	
 	
 lumin.nn.models.blocks.head	

 	
 	
 lumin.nn.models.blocks.tail	

 	
 	
 lumin.nn.models.helpers	

 	
 	
 lumin.nn.models.initialisations	

 	
 	
 lumin.nn.models.layers	

 	
 	
 lumin.nn.models.layers.activations	

 	
 	
 lumin.nn.models.model	

 	
 	
 lumin.nn.models.model_builder	

 	
 	
 lumin.nn.training	

 	
 	
 lumin.nn.training.fold_train	

 	
 	
 lumin.nn.training.metric_logger	

 	
 	
 lumin.optimisation	

 	
 	
 lumin.optimisation.features	

 	
 	
 lumin.optimisation.hyper_param	

 	
 	
 lumin.optimisation.threshold	

 	
 	
 lumin.plotting	

 	
 	
 lumin.plotting.data_viewing	

 	
 	
 lumin.plotting.interpretation	

 	
 	
 lumin.plotting.plot_settings	

 	
 	
 lumin.plotting.results	

 	
 	
 lumin.plotting.training	

 	
 	
 lumin.utils	

 	
 	
 lumin.utils.data	

 	
 	
 lumin.utils.misc	

 	
 	
 lumin.utils.multiprocessing	

 	
 	
 lumin.utils.statistics	

 	
 	
 lumin.version	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	AbsConv1dHead (class in lumin.nn.models.blocks.head)

 	AbsCyclicCallback (class in lumin.nn.callbacks.cyclic_callbacks)

 	AbsEndcap (class in lumin.nn.models.blocks.endcap)

 	AbsModelCallback (class in lumin.nn.callbacks.model_callbacks)

 	add_abs_mom() (in module lumin.data_processing.hep_proc)

 	add_energy() (in module lumin.data_processing.hep_proc)

 	add_ignore() (lumin.nn.data.fold_yielder.FoldYielder method)

 	add_input_pipe() (lumin.nn.data.fold_yielder.FoldYielder method)

 	(lumin.nn.ensemble.ensemble.Ensemble method)

 	add_input_pipe_from_file() (lumin.nn.data.fold_yielder.FoldYielder method)

 	add_loss_name() (lumin.nn.training.metric_logger.MetricLogger method)

 	add_mass() (in module lumin.data_processing.hep_proc)

 	
 	add_matrix_pipe() (lumin.nn.data.fold_yielder.FoldYielder method)

 	add_matrix_pipe_from_file() (lumin.nn.data.fold_yielder.FoldYielder method)

 	add_meta_data() (in module lumin.data_processing.file_proc)

 	add_mt() (in module lumin.data_processing.hep_proc)

 	add_output_pipe() (lumin.nn.data.fold_yielder.FoldYielder method)

 	(lumin.nn.ensemble.ensemble.Ensemble method)

 	add_output_pipe_from_file() (lumin.nn.data.fold_yielder.FoldYielder method)

 	AMS (class in lumin.nn.metrics.class_eval)

 	ams_scan_quick() (in module lumin.evaluation.ams)

 	ams_scan_slow() (in module lumin.evaluation.ams)

 	auto_filter_on_linear_correlation() (in module lumin.optimisation.features)

 	auto_filter_on_mutual_dependence() (in module lumin.optimisation.features)

 	AutoExtractLorentzBoostNet (class in lumin.nn.models.blocks.head)

B

 	
 	BatchYielder (class in lumin.nn.data.batch_yielder)

 	bin_binary_class_pred() (in module lumin.inference.summary_stat)

 	binary_class_cut_by_ams() (in module lumin.optimisation.threshold)

 	BinaryAccuracy (class in lumin.nn.metrics.class_eval)

 	BinaryLabelSmooth (class in lumin.nn.callbacks.data_callbacks)

 	
 	boost() (in module lumin.data_processing.hep_proc)

 	boost2cm() (in module lumin.data_processing.hep_proc)

 	bootstrap_stats() (in module lumin.utils.statistics)

 	BootstrapResample (class in lumin.nn.callbacks.data_callbacks)

 	build_ensemble() (lumin.nn.ensemble.ensemble.Ensemble method)

 	build_model() (lumin.nn.models.model_builder.ModelBuilder method)

C

 	
 	calc_ams() (in module lumin.evaluation.ams)

 	calc_ams_torch() (in module lumin.evaluation.ams)

 	calc_emb_szs() (lumin.nn.models.helpers.CatEmbedder method)

 	calc_pair_mass() (in module lumin.data_processing.hep_proc)

 	Callback (class in lumin.nn.callbacks.callback)

 	CatEmbedder (class in lumin.nn.models.helpers)

 	CatEmbHead (class in lumin.nn.models.blocks.head)

 	check_out_sz() (lumin.nn.models.blocks.head.AbsConv1dHead method)

 	(lumin.nn.models.blocks.head.LorentzBoostNet method)

 	
 	check_val_set() (in module lumin.utils.data)

 	ClassRegMulti (class in lumin.nn.models.blocks.tail)

 	close() (lumin.nn.data.fold_yielder.FoldYielder method)

 	columns() (lumin.nn.data.fold_yielder.FoldYielder method)

 	compare_events() (in module lumin.plotting.data_viewing)

 	Conv1DBlock (class in lumin.nn.models.blocks.conv_blocks)

 	cos_delta() (in module lumin.data_processing.hep_proc)

 	CycleLR (class in lumin.nn.callbacks.cyclic_callbacks)

 	CycleMom (class in lumin.nn.callbacks.cyclic_callbacks)

D

 	
 	delta_phi() (in module lumin.data_processing.hep_proc)

 	delta_r() (in module lumin.data_processing.hep_proc)

 	
 	delta_r_boosted() (in module lumin.data_processing.hep_proc)

 	df2foldfile() (in module lumin.data_processing.file_proc)

E

 	
 	Ensemble (class in lumin.nn.ensemble.ensemble)

 	EvalMetric (class in lumin.nn.metrics.eval_metric)

 	evaluate() (lumin.nn.metrics.class_eval.AMS method)

 	(lumin.nn.metrics.class_eval.BinaryAccuracy method)

 	(lumin.nn.metrics.class_eval.MultiAMS method)

 	(lumin.nn.metrics.class_eval.RocAucScore method)

 	(lumin.nn.metrics.eval_metric.EvalMetric method)

 	(lumin.nn.metrics.reg_eval.RegAsProxyPull method)

 	(lumin.nn.metrics.reg_eval.RegPull method)

 	(lumin.nn.models.model.Model method)

 	
 	evaluate_from_by() (lumin.nn.models.model.Model method)

 	event_to_cartesian() (in module lumin.data_processing.hep_proc)

 	export2onnx() (lumin.nn.ensemble.ensemble.Ensemble method)

 	(lumin.nn.models.model.Model method)

 	export2tfpb() (lumin.nn.ensemble.ensemble.Ensemble method)

 	(lumin.nn.models.model.Model method)

F

 	
 	feat_extractor() (lumin.nn.models.blocks.head.AutoExtractLorentzBoostNet method)

 	(lumin.nn.models.blocks.head.LorentzBoostNet method)

 	fit() (lumin.nn.models.model.Model method)

 	fit_input_pipe() (in module lumin.data_processing.pre_proc)

 	fit_output_pipe() (in module lumin.data_processing.pre_proc)

 	fix_event_phi() (in module lumin.data_processing.hep_proc)

 	fix_event_y() (in module lumin.data_processing.hep_proc)

 	fix_event_z() (in module lumin.data_processing.hep_proc)

 	fold2foldfile() (in module lumin.data_processing.file_proc)

 	fold_lr_find() (in module lumin.optimisation.hyper_param)

 	fold_train_ensemble() (in module lumin.nn.training.fold_train)

 	FoldYielder (class in lumin.nn.data.fold_yielder)

 	forward() (lumin.nn.losses.basic_weighted.WeightedCCE method)

 	(lumin.nn.losses.basic_weighted.WeightedMAE method)

 	(lumin.nn.losses.basic_weighted.WeightedMSE method)

 	(lumin.nn.losses.hep_losses.SignificanceLoss method)

 	(lumin.nn.models.blocks.body.FullyConnected method)

 	(lumin.nn.models.blocks.body.MultiBlock method)

 	(lumin.nn.models.blocks.conv_blocks.Conv1DBlock method)

 	(lumin.nn.models.blocks.conv_blocks.Res1DBlock method)

 	(lumin.nn.models.blocks.conv_blocks.ResNeXt1DBlock method)

 	(lumin.nn.models.blocks.endcap.AbsEndcap method)

 	(lumin.nn.models.blocks.head.AbsConv1dHead method)

 	(lumin.nn.models.blocks.head.CatEmbHead method)

 	(lumin.nn.models.blocks.head.InteractionNet method)

 	(lumin.nn.models.blocks.head.LorentzBoostNet method)

 	(lumin.nn.models.blocks.head.MultiHead method)

 	(lumin.nn.models.blocks.head.RecurrentHead method)

 	(lumin.nn.models.blocks.tail.ClassRegMulti method)

 	(lumin.nn.models.layers.activations.Swish method)

 	
 	FowardHook (class in lumin.utils.misc)

 	from_fy() (lumin.nn.models.helpers.CatEmbedder class method)

 	from_model_builder() (lumin.nn.models.model_builder.ModelBuilder class method)

 	from_models() (lumin.nn.ensemble.ensemble.Ensemble class method)

 	from_results() (lumin.nn.ensemble.ensemble.Ensemble class method)

 	from_save() (lumin.nn.ensemble.ensemble.Ensemble class method)

 	(lumin.nn.models.model.Model class method)

 	FullyConnected (class in lumin.nn.models.blocks.body)

 	func() (lumin.nn.models.blocks.endcap.AbsEndcap method)

G

 	
 	get_body() (lumin.nn.models.model_builder.ModelBuilder method)

 	get_column() (lumin.nn.data.fold_yielder.FoldYielder method)

 	get_conv1d_block() (lumin.nn.models.blocks.head.AbsConv1dHead method)

 	get_conv1d_res_block() (lumin.nn.models.blocks.head.AbsConv1dHead method)

 	get_conv1d_resNeXt_block() (lumin.nn.models.blocks.head.AbsConv1dHead method)

 	get_conv_layer() (lumin.nn.models.blocks.conv_blocks.Conv1DBlock method)

 	get_data() (lumin.nn.data.fold_yielder.FoldYielder method)

 	get_df() (lumin.nn.callbacks.opt_callbacks.LRFinder method)

 	(lumin.nn.data.fold_yielder.FoldYielder method)

 	(lumin.nn.metrics.eval_metric.EvalMetric method)

 	get_embeds() (lumin.nn.models.blocks.head.CatEmbHead method)

 	get_ensemble_feat_importance() (in module lumin.nn.interpretation.features)

 	get_feat_importance() (lumin.nn.ensemble.ensemble.Ensemble method)

 	(lumin.nn.models.model.Model method)

 	get_fold() (lumin.nn.data.fold_yielder.FoldYielder method)

 	(lumin.nn.data.fold_yielder.HEPAugFoldYielder method)

 	get_head() (lumin.nn.models.model_builder.ModelBuilder method)

 	get_ignore() (lumin.nn.data.fold_yielder.FoldYielder method)

 	get_inputs() (lumin.nn.data.batch_yielder.BatchYielder method)

 	get_layers() (lumin.nn.models.blocks.head.AbsConv1dHead method)

 	get_loss() (lumin.nn.callbacks.model_callbacks.AbsModelCallback method)

 	(lumin.nn.callbacks.model_callbacks.SWA method)

 	get_lr() (lumin.nn.models.model.Model method)

 	get_model() (lumin.nn.models.model_builder.ModelBuilder method)

 	get_mom() (lumin.nn.models.model.Model method)

 	
 	get_moments() (in module lumin.utils.statistics)

 	get_momentum() (in module lumin.data_processing.hep_proc)

 	get_nn_feat_importance() (in module lumin.nn.interpretation.features)

 	get_opt_rf_params() (in module lumin.optimisation.hyper_param)

 	get_out_size() (lumin.nn.models.blocks.body.FullyConnected method)

 	(lumin.nn.models.blocks.body.MultiBlock method)

 	(lumin.nn.models.blocks.head.AbsConv1dHead method)

 	(lumin.nn.models.blocks.head.CatEmbHead method)

 	(lumin.nn.models.blocks.head.InteractionNet method)

 	(lumin.nn.models.blocks.head.LorentzBoostNet method)

 	(lumin.nn.models.blocks.head.MultiHead method)

 	(lumin.nn.models.blocks.head.RecurrentHead method)

 	(lumin.nn.models.blocks.tail.ClassRegMulti method)

 	(lumin.nn.models.model.Model method)

 	(lumin.nn.models.model_builder.ModelBuilder method)

 	get_padding() (lumin.nn.models.blocks.conv_blocks.Conv1DBlock static method)

 	get_param_count() (lumin.nn.models.model.Model method)

 	get_pre_proc_pipes() (in module lumin.data_processing.pre_proc)

 	get_rf_feat_importance() (in module lumin.optimisation.features)

 	get_tail() (lumin.nn.models.model_builder.ModelBuilder method)

 	get_test_fold() (lumin.nn.data.fold_yielder.HEPAugFoldYielder method)

 	get_use_cat_feats() (lumin.nn.data.fold_yielder.FoldYielder method)

 	get_use_cont_feats() (lumin.nn.data.fold_yielder.FoldYielder method)

 	get_vecs() (in module lumin.data_processing.hep_proc)

 	get_weights() (lumin.nn.models.model.Model method)

 	GradClip (class in lumin.nn.callbacks.loss_callbacks)

H

 	
 	HEPAugFoldYielder (class in lumin.nn.data.fold_yielder)

 	
 	hook_fn() (lumin.utils.misc.FowardHook method)

I

 	
 	ids2unique() (in module lumin.utils.misc)

 	
 	InteractionNet (class in lumin.nn.models.blocks.head)

L

 	
 	load() (lumin.nn.ensemble.ensemble.Ensemble method)

 	(lumin.nn.models.model.Model method)

 	load_pretrained() (lumin.nn.models.model_builder.ModelBuilder method)

 	load_trained_model() (lumin.nn.ensemble.ensemble.Ensemble static method)

 	lookup_act() (in module lumin.nn.models.layers.activations)

 	lookup_normal_init() (in module lumin.nn.models.initialisations)

 	lookup_uniform_init() (in module lumin.nn.models.initialisations)

 	LorentzBoostNet (class in lumin.nn.models.blocks.head)

 	LRFinder (class in lumin.nn.callbacks.opt_callbacks)

 	LsuvInit (class in lumin.nn.callbacks.lsuv_init)

 	lumin (module)

 	lumin.data_processing (module)

 	lumin.data_processing.file_proc (module)

 	lumin.data_processing.hep_proc (module)

 	lumin.data_processing.pre_proc (module)

 	lumin.evaluation (module)

 	lumin.evaluation.ams (module)

 	lumin.inference (module)

 	lumin.inference.summary_stat (module)

 	lumin.nn (module)

 	lumin.nn.callbacks (module)

 	lumin.nn.callbacks.callback (module)

 	lumin.nn.callbacks.cyclic_callbacks (module)

 	lumin.nn.callbacks.data_callbacks (module)

 	lumin.nn.callbacks.loss_callbacks (module)

 	lumin.nn.callbacks.lsuv_init (module)

 	lumin.nn.callbacks.model_callbacks (module)

 	lumin.nn.callbacks.opt_callbacks (module)

 	lumin.nn.data (module)

 	lumin.nn.data.batch_yielder (module)

 	lumin.nn.data.fold_yielder (module)

 	lumin.nn.ensemble (module)

 	lumin.nn.ensemble.ensemble (module)

 	lumin.nn.interpretation (module)

 	lumin.nn.interpretation.features (module)

 	lumin.nn.losses (module)

 	lumin.nn.losses.basic_weighted (module)

 	
 	lumin.nn.losses.hep_losses (module)

 	lumin.nn.metrics (module)

 	lumin.nn.metrics.class_eval (module)

 	lumin.nn.metrics.eval_metric (module)

 	lumin.nn.metrics.reg_eval (module)

 	lumin.nn.models (module)

 	lumin.nn.models.blocks (module)

 	lumin.nn.models.blocks.body (module)

 	lumin.nn.models.blocks.conv_blocks (module)

 	lumin.nn.models.blocks.endcap (module)

 	lumin.nn.models.blocks.head (module)

 	lumin.nn.models.blocks.tail (module)

 	lumin.nn.models.helpers (module)

 	lumin.nn.models.initialisations (module)

 	lumin.nn.models.layers (module)

 	lumin.nn.models.layers.activations (module)

 	lumin.nn.models.model (module)

 	lumin.nn.models.model_builder (module)

 	lumin.nn.training (module)

 	lumin.nn.training.fold_train (module)

 	lumin.nn.training.metric_logger (module)

 	lumin.optimisation (module)

 	lumin.optimisation.features (module)

 	lumin.optimisation.hyper_param (module)

 	lumin.optimisation.threshold (module)

 	lumin.plotting (module)

 	lumin.plotting.data_viewing (module)

 	lumin.plotting.interpretation (module)

 	lumin.plotting.plot_settings (module)

 	lumin.plotting.results (module)

 	lumin.plotting.training (module)

 	lumin.utils (module)

 	lumin.utils.data (module)

 	lumin.utils.misc (module)

 	lumin.utils.multiprocessing (module)

 	lumin.utils.statistics (module)

 	lumin.version (module)

M

 	
 	MetricLogger (class in lumin.nn.training.metric_logger)

 	Model (class in lumin.nn.models.model)

 	ModelBuilder (class in lumin.nn.models.model_builder)

 	
 	mp_run() (in module lumin.utils.multiprocessing)

 	MultiAMS (class in lumin.nn.metrics.class_eval)

 	MultiBlock (class in lumin.nn.models.blocks.body)

 	MultiHead (class in lumin.nn.models.blocks.head)

O

 	
 	on_backwards_end() (lumin.nn.callbacks.loss_callbacks.GradClip method)

 	on_batch_begin() (lumin.nn.callbacks.cyclic_callbacks.AbsCyclicCallback method)

 	(lumin.nn.callbacks.cyclic_callbacks.CycleLR method)

 	(lumin.nn.callbacks.cyclic_callbacks.CycleMom method)

 	(lumin.nn.callbacks.cyclic_callbacks.OneCycle method)

 	on_batch_end() (lumin.nn.callbacks.cyclic_callbacks.AbsCyclicCallback method)

 	(lumin.nn.callbacks.opt_callbacks.LRFinder method)

 	on_epoch_begin() (lumin.nn.callbacks.cyclic_callbacks.AbsCyclicCallback method)

 	(lumin.nn.callbacks.data_callbacks.BinaryLabelSmooth method)

 	(lumin.nn.callbacks.data_callbacks.BootstrapResample method)

 	(lumin.nn.callbacks.lsuv_init.LsuvInit method)

 	(lumin.nn.callbacks.model_callbacks.SWA method)

 	
 	on_epoch_end() (lumin.nn.callbacks.model_callbacks.SWA method)

 	on_eval_begin() (lumin.nn.callbacks.data_callbacks.BinaryLabelSmooth method)

 	on_pred_begin() (lumin.nn.callbacks.data_callbacks.ParametrisedPrediction method)

 	on_train_begin() (lumin.nn.callbacks.data_callbacks.BootstrapResample method)

 	(lumin.nn.callbacks.lsuv_init.LsuvInit method)

 	(lumin.nn.callbacks.model_callbacks.SWA method)

 	(lumin.nn.callbacks.opt_callbacks.LRFinder method)

 	on_train_end() (lumin.nn.callbacks.data_callbacks.SequentialReweight method)

 	OneCycle (class in lumin.nn.callbacks.cyclic_callbacks)

P

 	
 	ParametrisedPrediction (class in lumin.nn.callbacks.data_callbacks)

 	plot() (lumin.nn.callbacks.cyclic_callbacks.AbsCyclicCallback method)

 	(lumin.nn.callbacks.cyclic_callbacks.OneCycle method)

 	(lumin.nn.callbacks.opt_callbacks.LRFinder method)

 	plot_1d_partial_dependence() (in module lumin.plotting.interpretation)

 	plot_2d_partial_dependence() (in module lumin.plotting.interpretation)

 	plot_binary_class_pred() (in module lumin.plotting.results)

 	plot_binary_sample_feat() (in module lumin.plotting.data_viewing)

 	plot_bottleneck_weighted_inputs() (in module lumin.plotting.interpretation)

 	plot_embedding() (in module lumin.plotting.interpretation)

 	plot_embeds() (lumin.nn.models.blocks.head.CatEmbHead method)

 	plot_feat() (in module lumin.plotting.data_viewing)

 	plot_importance() (in module lumin.plotting.interpretation)

 	plot_kdes_from_bs() (in module lumin.plotting.data_viewing)

 	plot_lr() (lumin.nn.callbacks.opt_callbacks.LRFinder method)

 	
 	plot_lr_finders() (in module lumin.plotting.training)

 	plot_multibody_weighted_outputs() (in module lumin.plotting.interpretation)

 	plot_rank_order_dendrogram() (in module lumin.plotting.data_viewing)

 	plot_roc() (in module lumin.plotting.results)

 	plot_sample_pred() (in module lumin.plotting.results)

 	plot_train_history() (in module lumin.plotting.training)

 	PlotSettings (class in lumin.plotting.plot_settings)

 	predict() (lumin.nn.ensemble.ensemble.Ensemble method)

 	(lumin.nn.models.blocks.endcap.AbsEndcap method)

 	(lumin.nn.models.model.Model method)

 	predict_array() (lumin.nn.ensemble.ensemble.Ensemble method)

 	(lumin.nn.models.model.Model method)

 	predict_folds() (lumin.nn.ensemble.ensemble.Ensemble method)

 	(lumin.nn.models.model.Model method)

 	proc_cats() (in module lumin.data_processing.pre_proc)

 	proc_event() (in module lumin.data_processing.hep_proc)

R

 	
 	RecurrentHead (class in lumin.nn.models.blocks.head)

 	RegAsProxyPull (class in lumin.nn.metrics.reg_eval)

 	RegPull (class in lumin.nn.metrics.reg_eval)

 	remove() (lumin.utils.misc.FowardHook method)

 	repeated_rf_rank_features() (in module lumin.optimisation.features)

 	
 	Res1DBlock (class in lumin.nn.models.blocks.conv_blocks)

 	reset() (lumin.nn.training.metric_logger.MetricLogger method)

 	ResNeXt1DBlock (class in lumin.nn.models.blocks.conv_blocks)

 	rf_check_feat_removal() (in module lumin.optimisation.features)

 	rf_rank_features() (in module lumin.optimisation.features)

 	RocAucScore (class in lumin.nn.metrics.class_eval)

S

 	
 	save() (lumin.nn.ensemble.ensemble.Ensemble method)

 	(lumin.nn.models.model.Model method)

 	save_embeds() (lumin.nn.models.blocks.head.CatEmbHead method)

 	save_fold_pred() (lumin.nn.data.fold_yielder.FoldYielder method)

 	save_to_grp() (in module lumin.data_processing.file_proc)

 	SequentialReweight (class in lumin.nn.callbacks.data_callbacks)

 	SequentialReweightClasses (class in lumin.nn.callbacks.data_callbacks)

 	set_cyclic_callback() (lumin.nn.callbacks.model_callbacks.AbsModelCallback method)

 	set_input_mask() (lumin.nn.models.model.Model method)

 	set_layers() (lumin.nn.models.blocks.conv_blocks.Conv1DBlock method)

 	(lumin.nn.models.blocks.conv_blocks.Res1DBlock method)

 	(lumin.nn.models.blocks.conv_blocks.ResNeXt1DBlock method)

 	set_lr() (lumin.nn.models.model.Model method)

 	(lumin.nn.models.model_builder.ModelBuilder method)

 	
 	set_model() (lumin.nn.callbacks.callback.Callback method)

 	set_mom() (lumin.nn.models.model.Model method)

 	set_nb() (lumin.nn.callbacks.cyclic_callbacks.AbsCyclicCallback method)

 	set_plot_settings() (lumin.nn.callbacks.callback.Callback method)

 	set_val_fold() (lumin.nn.callbacks.model_callbacks.AbsModelCallback method)

 	set_weights() (lumin.nn.models.model.Model method)

 	SignificanceLoss (class in lumin.nn.losses.hep_losses)

 	str2bool() (in module lumin.utils.misc)

 	str2sz() (lumin.plotting.plot_settings.PlotSettings method)

 	subsample_df() (in module lumin.utils.misc)

 	SWA (class in lumin.nn.callbacks.model_callbacks)

 	Swish (class in lumin.nn.models.layers.activations)

T

 	
 	to_binary_class() (in module lumin.utils.misc)

 	to_cartesian() (in module lumin.data_processing.hep_proc)

 	to_device() (in module lumin.utils.misc)

 	
 	to_np() (in module lumin.utils.misc)

 	to_pt_eta_phi() (in module lumin.data_processing.hep_proc)

 	to_tensor() (in module lumin.utils.misc)

 	twist() (in module lumin.data_processing.hep_proc)

U

 	
 	uncert_round() (in module lumin.utils.statistics)

 	
 	update_plot() (lumin.nn.training.metric_logger.MetricLogger method)

 	update_vals() (lumin.nn.training.metric_logger.MetricLogger method)

W

 	
 	WeightedCCE (class in lumin.nn.losses.basic_weighted)

 	
 	WeightedMAE (class in lumin.nn.losses.basic_weighted)

 	WeightedMSE (class in lumin.nn.losses.basic_weighted)

Distinguishing Characteristics

Data objects

	Use with large datasets: HEP data can become quite large, making training difficult:

	The FoldYielder class provides on-demand access to data stored in HDF5 format, only loading into memory what is required.

	Conversion from ROOT and CSV to HDF5 is easy to achieve using (see examples)

	FoldYielder provides conversion methods to Pandas DataFrame for use with other internal methods and external packages

	Non-network-specific methods expect Pandas DataFrame allowing their use without having to convert to FoldYielder.

Deep learning

	PyTorch > 1.0

	Inclusion of recent deep learning techniques and practices, including:

	Dynamic learning rate, momentum, beta_1:

	Cyclical, Smith, 2015 [https://arxiv.org/abs/1506.01186]

	Cosine annealed Loschilov & Hutter, 2016 [https://arxiv.org/abs/1608.03983]

	1-cycle, Smith, 2018 [https://arxiv.org/abs/1803.09820]

	HEP-specific data augmentation during training and inference

	Advanced ensembling methods:

	Snapshot ensembles Huang et al., 2017 [https://arxiv.org/abs/1704.00109]

	Fast geometric ensembles Garipov et al., 2018 [https://arxiv.org/abs/1802.10026]

	Stochastic Weight Averaging Izmailov et al., 2018 [https://arxiv.org/abs/1803.05407]

	Learning Rate Finders, Smith, 2015 [https://arxiv.org/abs/1506.01186]

	Entity embedding of categorical features, Guo & Berkhahn, 2016 [https://arxiv.org/abs/1604.06737]

	Label smoothing Szegedy et al., 2015 [https://arxiv.org/abs/1512.00567]

	Flexible architecture construction:

	ModelBuilder takes parameters and modules to yield networks on-demand

	Networks constructed from modular blocks:

	Head - Takes input features

	Body - Contains most of the hidden layers

	Tail - Scales down the body to the desired number of outputs

	Endcap - Optional layer for use post-training to provide further computation on model outputs; useful when training on a proxy objective

	Easy loading and saving of pre-trained embedding weights

	Modern architectures like:

	Residual and dense(-like) networks (He et al. 2015 [https://arxiv.org/abs/1512.03385] & Huang et al. 2016 [https://arxiv.org/abs/1608.06993])

	Graph nets for physics objects, e.g. Battaglia, Pascanu, Lai, Rezende, Kavukcuoglu, 2016 [https://arxiv.org/abs/1612.00222] & Moreno et al., 2019 [https://arxiv.org/abs/1908.05318]

	Recurrent layers for series of objects

	1D convolutional networks for series of objects

	HEP-specific architectures, e.g. LorentzBoostNetworks Erdmann, Geiser, Rath, Rieger, 2018 [https://arxiv.org/abs/1812.09722]

	Configurable initialisations, including LSUV Mishkin, Matas, 2016 [https://arxiv.org/abs/1511.06422]

	HEP-specific losses, e.g. Asimov loss Elwood & Krücker, 2018 [https://arxiv.org/abs/1806.00322]

	Easy training and inference of ensembles of models:

	Default training method fold_train_ensemble, trains a specified number of models as well as just a single model

	Ensemble class handles the (metric-weighted) construction of an ensemble, its inference, saving and loading, and interpretation

	Easy exporting of models to other libraries via Onnx

	Use with CPU and NVidia GPU

	Evaluation on domain-specific metrics such as Approximate Median Significance via EvalMetric class

	Keras-style callbacks

Feature selection methods

	Dendrograms of feature-pair monotonacity

	Feature importance via auto-optimised SK-Learn random forests

	Mutual dependance (via RFPImp)

	Automatic filtering and selection of features

Interpretation

	Feature importance for models and ensembles

	Embedding visualisation

	1D & 2D partial dependency plots (via PDPbox)

Plotting

	Variety of domain-specific plotting functions

	Unified appearance via PlotSettings class - class accepted by every plot function providing control of plot appearance, titles, colour schemes, et cetera

Universal handling of sample weights

	HEP events are normally accompanied by weight characterising the acceptance and production cross-section of that particular event, or to flatten some distribution.

	Relevant methods and classes can take account of these weights.

	This includes training, interpretation, and plotting

	Expansion of PyTorch losses to better handle weights

Parameter optimisation

	Optimal learning rate via cross-validated range tests Smith, 2015 [https://arxiv.org/abs/1506.01186]

	Quick, rough optimisation of random forest hyper parameters

	Generalisable Cut & Count thresholds

	1D discriminant binning with respect to bin-fill uncertainty

Statistics and uncertainties

	Integral to experimental science

	Quantitative results are accompanied by uncertainties

	Use of bootstrapping to improve precision of statistics estimated from small samples

Look and feel

	LUMIN aims to feel fast to use - liberal use of progress bars mean you’re able to always know when tasks will finish, and get live updates of training

	Guaranteed to spark joy (in its current beta state, LUMIN may instead ignite rage, despair, and frustration - dev.)

Installation

Due to some strict version requirements on packages, it is recommended to install LUMIN in its own Python environment, e.g conda create -n lumin python=3.6

From PyPI

The main package can be installed via:
pip install lumin

Full functionality requires two additional packages as described below.

From source

git clone git@github.com:GilesStrong/lumin.git
cd lumin
pip install .

Optionally, run pip install with -e flag for development installation. Full functionality requires an additional package as described below.

Additional modules

Full use of LUMIN requires the latest version of PDPbox, but this is not released yet on PyPI, so you’ll need to install it from source, too:

	git clone https://github.com/SauceCat/PDPbox.git && cd PDPbox && pip install -e . note the -e flag to make sure the version number gets set properly.

Notes

Why use LUMIN

TMVA contained in CERN’s ROOT system, has been the default choice for BDT training for analysis and reconstruction algorithms due to never having to leave ROOT format. With the gradual move to DNN approaches, more scientists are looking to move their data out of ROOT to use the wider selection of tools which are available. Keras appears to be the first stop due to its ease of use, however implementing recent methods in Keras can be difficult, and sometimes requires dropping back to the tensor library that it aims to abstract. Indeed, the prequel to LUMIN was a similar wrapper for Keras (HEPML_Tools [https://github.com/GilesStrong/hepml_tools]) which involved some pretty ugly hacks.
The fastai framework provides access to these recent methods, however doesn’t yet support sample weights to the extent that HEP requires.
LUMIN aims to provide the best of both, Keras-style sample weighting and fastai training methods, while focussing on columnar data and providing domain-specific metrics, plotting, and statistical treatment of results and uncertainties.

Data types

LUMIN is primarily designed for use on columnar data, and from version 0.5 onwards this also includes matrix data; ordered series and un-ordered groups of objects. With some extra work it can be used on other data formats, but at the moment it has nothing special to offer. Whilst recent work in HEP has made use of jet images and GANs, these normally hijack existing ideas and models. Perhaps once we get established, domain specific approaches which necessitate the use of a specialised framework, then LUMIN could grow to meet those demands, but for now I’d recommend checking out the fastai library, especially for image data.

With just one main developer, I’m simply focussing on the data types and applications I need for my own research and common use cases in HEP. If, however you would like to use LUMIN’s other methods for your own work on other data formats, then you are most welcome to contribute and help to grow LUMIN to better meet the needs of the scientific community.

Future

The current priority is to imporve the documentation, add unit tests, and expand the examples.

The next step will be to try to increase the user base and number of contributors. I’m aiming to achieve this through presentations, tutorials, blog posts, and papers.

Further improvements will be in the direction of implementing new methods and (HEP-specific) architectures, as well as providing helper functions and data exporters to statistical analysis packages like Combine and PYHF.

Contributing & feedback

Contributions, suggestions, and feedback are most welcome! The issue tracker on this repo is probably the best place to report bugs et cetera.

Code style

Nope, the majority of the codebase does not conform to PEP8. PEP8 has its uses, but my understanding is that it primarily written for developers and maintainers of software whose users never need to read the source code. As a maths-heavy research framework which users are expected to interact with, PEP8 isn’t the best style. Instead, I’m aiming to follow more the style of fastai [https://docs.fast.ai/dev/style.html], which emphasises, in particular, reducing vertical space (useful for reading source code in a notebook) naming and abbreviating variables according to their importance and lifetime (easier to recognise which variables have a larger scope and permits easier writing of mathematical operations). A full list of the abbreviations used may be found in abbr.md [https://github.com/GilesStrong/lumin/blob/master/abbr.md]

Why is LUMIN called LUMIN?

Aside from being a recursive acronym (and therefore the best kind of acronym) lumin is short for ‘luminosity’. In high-energy physics, the integrated luminosity of the data collected by an experiment is the main driver in the results that analyses obtain. With the paradigm shift towards multivariate analyses, however, improved methods can be seen as providing ‘artificial luminosity’; e.g. the gain offered by some DNN could be measured in terms of the amount of extra data that would have to be collected to achieve the same result with a more traditional analysis. Luminosity can also be connected to the fact that LUMIN is built around the python version of Torch.

Who develops LUMIN

LUMIN is primarily developed by Giles Strong; a British-born PhD student in particle physics at IST (Portugal), and researcher at The University of Padova (Italy), and a member of the CMS collaboration at CERN.

As LUMIN has grown, it has welcomed contributions from members of the scientific and software development community. Check out the contributors page [https://github.com/GilesStrong/lumin/graphs/contributors] for a complete list.

Certainly more developers and contributors are welcome to join and help out!

Reference

If you have used LUMIN in your analysis work and wish to cite it, the preferred reference is: Giles C. Strong, LUMIN, Zenodo (Mar. 2019), https://doi.org/10.5281/zenodo.2601857, Note: Please check https://github.com/GilesStrong/lumin/graphs/contributors for the full list of contributors

@misc{giles_chatham_strong_2019_2601857,
 author = {Giles Chatham Strong},
 title = {LUMIN},
 month = mar,
 year = 2019,
 note = {{Please check https://github.com/GilesStrong/lumin/graphs/contributors for the full list of contributors}},
 doi = {10.5281/zenodo.2601857},
 url = {https://doi.org/10.5281/zenodo.2601857}
}

lumin package

Subpackages

	lumin.data_processing package

	lumin.evaluation package

	lumin.inference package

	lumin.nn package

	lumin.optimisation package

	lumin.plotting package

	lumin.utils package

Submodules

lumin.version module

Module contents

lumin

	lumin package

 _static/img/Lumin-logo-tall-coloured.png

_static/img/Lumin-logo-tall-dark.png

nav.xhtml

 Table of Contents

 		
 LUMIN

 		
 lumin.data_processing package

 		
 Submodules

 		
 lumin.data_processing.file_proc module

 		
 lumin.data_processing.hep_proc module

 		
 lumin.data_processing.pre_proc module

 		
 Module contents

 		
 lumin.evaluation package

 		
 Submodules

 		
 lumin.evaluation.ams module

 		
 Module contents

 		
 lumin.inference package

 		
 Submodules

 		
 lumin.inference.summary_stat module

 		
 Module contents

 		
 lumin.nn package

 		
 Subpackages

 		
 lumin.nn.callbacks package

 		
 lumin.nn.data package

 		
 lumin.nn.ensemble package

 		
 lumin.nn.interpretation package

 		
 lumin.nn.losses package

 		
 lumin.nn.metrics package

 		
 lumin.nn.models package

 		
 lumin.nn.training package

 		
 Module contents

 		
 lumin.optimisation package

 		
 Submodules

 		
 lumin.optimisation.features module

 		
 lumin.optimisation.hyper_param module

 		
 lumin.optimisation.threshold module

 		
 Module contents

 		
 lumin.plotting package

 		
 Submodules

 		
 lumin.plotting.data_viewing module

 		
 lumin.plotting.interpretation module

 		
 lumin.plotting.plot_settings module

 		
 lumin.plotting.results module

 		
 lumin.plotting.training module

 		
 Module contents

 		
 lumin.utils package

 		
 Submodules

 		
 lumin.utils.data module

 		
 lumin.utils.misc module

 		
 lumin.utils.multiprocessing module

 		
 lumin.utils.statistics module

 		
 Module contents

_static/Lumin-logo-tall-dark.png

_static/minus.png

_static/plus.png

_static/file.png

