• Docs >
  • lumin.inference package
Shortcuts

lumin.inference package

Submodules

lumin.inference.summary_stat module

lumin.inference.summary_stat.bin_binary_class_pred(df, max_unc, consider_samples=None, step_sz=0.001, pred_name='pred', sample_name='gen_sample', compact_samples=False, class_name='gen_target', add_pure_signal_bin=False, max_unc_pure_signal=0.1, verbose=True)[source]

Define bin-edges for binning particle process samples as a function of event class prediction (signal | background) such that the statistical uncertainties on per bin yields are below max_unc for each considered sample.

Parameters:
  • df (DataFrame) – DataFrame containing the data

  • max_unc (float) – maximum fractional statisitcal uncertainty to allow when defining bins

  • consider_samples (Optional[List[str]]) – if set, only listed samples are considered when defining bins

  • step_sz (float) – resolution of scan along event prediction

  • pred_name (str) – column to use as event class prediction

  • sample_name (str) – column to use as particle process fo reach event

  • compact_samples (bool) – if true, will not consider samples when computing bin edges, only the class

  • class_name (str) – name of column to use as class indicator

  • add_pure_signal_bin (bool) – if true will attempt to add a bin which oonly contains signal (class 1) if the fractional bin-fill uncertainty would be less than max_unc_pure_signal

  • max_unc_pure_signal (float) – maximum fractional statisitcal uncertainty to allow when defining pure-signal bins

  • verbose (bool) – whether to show progress bar

Return type:

List[float]

Returns:

list of bin edges

Module contents

Docs

Access comprehensive developer and user documentation for LUMIN

View Docs

Tutorials

Get tutorials for beginner and advanced researchers demonstrating many of the features of LUMIN

View Tutorials