lumin.inference package¶
Submodules¶
lumin.inference.summary_stat module¶
- lumin.inference.summary_stat.bin_binary_class_pred(df, max_unc, consider_samples=None, step_sz=0.001, pred_name='pred', sample_name='gen_sample', compact_samples=False, class_name='gen_target', add_pure_signal_bin=False, max_unc_pure_signal=0.1, verbose=True)[source]¶
Define bin-edges for binning particle process samples as a function of event class prediction (signal | background) such that the statistical uncertainties on per bin yields are below max_unc for each considered sample.
- Parameters:
df (
DataFrame
) – DataFrame containing the datamax_unc (
float
) – maximum fractional statisitcal uncertainty to allow when defining binsconsider_samples (
Optional
[List
[str
]]) – if set, only listed samples are considered when defining binsstep_sz (
float
) – resolution of scan along event predictionpred_name (
str
) – column to use as event class predictionsample_name (
str
) – column to use as particle process fo reach eventcompact_samples (
bool
) – if true, will not consider samples when computing bin edges, only the classclass_name (
str
) – name of column to use as class indicatoradd_pure_signal_bin (
bool
) – if true will attempt to add a bin which oonly contains signal (class 1) if the fractional bin-fill uncertainty would be less than max_unc_pure_signalmax_unc_pure_signal (
float
) – maximum fractional statisitcal uncertainty to allow when defining pure-signal binsverbose (
bool
) – whether to show progress bar
- Return type:
List
[float
]- Returns:
list of bin edges