import numpy as np
from typing import Optional, Tuple, Union, List
from .callback import Callback
from ..models.abs_model import AbsModel
from ...plotting.plot_settings import PlotSettings
import seaborn as sns
import matplotlib.pyplot as plt
sns.set_style("whitegrid")
__all__ = ['AbsCyclicCallback', 'CycleLR', 'CycleMom', 'OneCycle']
[docs]class AbsCyclicCallback(Callback):
r'''
Abstract class for callbacks affecting lr or mom
Arguments:
interp: string representation of interpolation function. Either 'linear' or 'cosine'.
param_range: minimum and maximum values for parameter
cycle_mult: multiplicative factor for adjusting the cycle length after each cycle.
E.g `cycle_mult=1` keeps the same cycle length, `cycle_mult=2` doubles the cycle length after each cycle.
decrease_param: whether to begin by decreasing the parameter, otherwise begin by increasing it
scale: multiplicative factor for setting the initial number of epochs per cycle.
E.g `scale=1` means 1 epoch per cycle, `scale=5` means 5 epochs per cycle.
model: model to refer to during training
nb: number of minibatches (iterations) to expect per epoch
plot_settings: PlotSettings class
'''
def __init__(self, interp:str, param_range:Tuple[float,float], cycle_mult:int=1, decrease_param:bool=False, scale:int=1,
model:Optional[AbsModel]=None, nb:Optional[int]=None, plot_settings:PlotSettings=PlotSettings()):
super().__init__(model=model, plot_settings=plot_settings)
self.param_range,self.cycle_mult,self.decrease_param,self.scale = param_range,cycle_mult,decrease_param,scale
self.interp,self.cycle_iter,self.cycle_count,self.cycle_end,self.hist = interp.lower(),0,0,False,[]
if nb is not None: self.nb = self.scale*nb
[docs] def set_nb(self, nb:int) -> None:
r'''
Sets the callback's internal number of iterations per cycle equal to `nb*scale`
Arguments:
nb: number of minibatches per epoch
'''
self.nb = self.scale*nb
def _incr_cycle(self) -> None:
self.cycle_iter += 1
if self.cycle_iter == self.nb:
self.cycle_iter = 0
self.nb *= self.cycle_mult
self.cycle_count += 1
self.cycle_end = True
[docs] def plot(self) -> None:
r'''
Plots the history of the parameter evolution as a function of iterations
'''
with sns.axes_style(self.plot_settings.style), sns.color_palette(self.plot_settings.cat_palette):
plt.figure(figsize=(self.plot_settings.w_mid, self.plot_settings.h_mid))
plt.xlabel("Iterations", fontsize=self.plot_settings.lbl_sz, color=self.plot_settings.lbl_col)
plt.ylabel(self.param_name, fontsize=self.plot_settings.lbl_sz, color=self.plot_settings.lbl_col)
plt.plot(range(len(self.hist)), self.hist)
plt.xticks(fontsize=self.plot_settings.tk_sz, color=self.plot_settings.tk_col)
plt.yticks(fontsize=self.plot_settings.tk_sz, color=self.plot_settings.tk_col)
plt.show()
def _calc_param(self) -> float:
if self.interp == 'cosine':
x = np.cos(np.pi*(self.cycle_iter)/self.nb)+1
dx = (self.param_range[1]-self.param_range[0])*x/2
return self.param_range[1]-dx if not self.decrease_param else dx+self.param_range[0]
elif self.interp == 'linear':
x = np.abs((2*self.cycle_iter/self.nb)-1)
dx = (self.param_range[1]-self.param_range[0])*np.max([0, 1-x])
return self.param_range[1]-dx if self.decrease_param else dx+self.param_range[0]
else:
raise ValueError(f"Interpolation mode {self.interp} not implemented")
[docs] def on_epoch_begin(self, **kargs) -> None:
r'''
Ensures the `cycle_end` flag is false when the epoch starts
'''
self.cycle_end = False
[docs] def on_batch_end(self, **kargs) -> None:
r'''
Increments the callback's progress through the cycle
'''
self._incr_cycle()
[docs] def on_batch_begin(self, **kargs) -> float:
r'''
Computes the new value for the optimiser parameter and returns it
Returns:
new value for optimiser parameter
'''
param = self._calc_param()
self.hist.append(param)
return param
[docs]class CycleLR(AbsCyclicCallback):
r'''
Callback to cycle learning rate during training according to either:
cosine interpolation for SGDR https://arxiv.org/abs/1608.03983
or linear interpolation for Smith cycling https://arxiv.org/abs/1506.01186
Arguments:
lr_range: tuple of initial and final LRs
interp: 'cosine' or 'linear' interpolation
cycle_mult: Multiplicative constant for altering the cycle length after each complete cycle
decrease_param: whether to increase or decrease the LR (effectively reverses lr_range order), 'auto' selects according to interp
scale: Multiplicative constant for altering the length of a cycle. 1 corresponds to one cycle = one (sub-)epoch
model: :class:`~lumin.nn.models.model.Model` to alter, alternatively call :meth:`~lumin.nn.models.Model.set_model`.
nb: Number of batches in a (sub-)epoch
plot_settings: :class:`~lumin.plotting.plot_settings.PlotSettings` class to control figure appearance
Examples::
>>> cosine_lr = CycleLR(lr_range=(0, 2e-3), cycle_mult=2, scale=1,
... interp='cosine', nb=100)
>>>
>>> cyclical_lr = CycleLR(lr_range=(2e-4, 2e-3), cycle_mult=1, scale=5,
interp='linear', nb=100)
'''
# TODO sort lr-range or remove decrease_param
def __init__(self, lr_range:Tuple[float,float], interp:str='cosine', cycle_mult:int=1, decrease_param:Union[str,bool]='auto', scale:int=1,
model:Optional[AbsModel]=None, nb:Optional[int]=None, plot_settings:PlotSettings=PlotSettings()):
if decrease_param == 'auto': decrease_param = True if interp == 'cosine' else False
super().__init__(interp=interp, param_range=lr_range, cycle_mult=cycle_mult,
decrease_param=decrease_param, scale=scale, model=model, nb=nb, plot_settings=plot_settings)
self.param_name = 'Learning Rate'
[docs] def on_batch_begin(self, **kargs) -> None:
r'''
Computes the new lr and assignes it to the optimiser
'''
lr = super().on_batch_begin(**kargs)
self.model.set_lr(lr)
[docs]class CycleMom(AbsCyclicCallback):
r'''
Callback to cycle momentum (beta 1) during training according to either:
cosine interpolation for SGDR https://arxiv.org/abs/1608.03983
or linear interpolation for Smith cycling https://arxiv.org/abs/1506.01186
By default is set to evolve in opposite direction to learning rate, a la https://arxiv.org/abs/1803.09820
Arguments:
mom_range: tuple of initial and final momenta
interp: 'cosine' or 'linear' interpolation
cycle_mult: Multiplicative constant for altering the cycle length after each complete cycle
decrease_param: whether to increase or decrease the momentum (effectively reverses mom_range order), 'auto' selects according to interp
scale: Multiplicative constant for altering the length of a cycle. 1 corresponds to one cycle = one (sub-)epoch
model: :class:`~lumin.nn.models.model.Model` to alter, alternatively call :meth:`~lumin.nn.models.Model.set_model`
nb: Number of batches in a (sub-)epoch
plot_settings: :class:`~lumin.plotting.plot_settings.PlotSettings` class to control figure appearance
Examples::
>>> cyclical_mom = CycleMom(mom_range=(0.85 0.95), cycle_mult=1,
... scale=5, interp='linear', nb=100)
'''
# TODO sort lr-range or remove decrease_param
def __init__(self, mom_range:Tuple[float,float], interp:str='cosine', cycle_mult:int=1, decrease_param:Union[str,bool]='auto', scale:int=1,
model:Optional[AbsModel]=None, nb:Optional[int]=None, plot_settings:PlotSettings=PlotSettings()):
if decrease_param == 'auto': decrease_param = False if interp == 'cosine' else True
super().__init__(interp=interp, param_range=mom_range, cycle_mult=cycle_mult,
decrease_param=decrease_param, scale=scale, model=model, nb=nb, plot_settings=plot_settings)
self.param_name = 'Momentum'
[docs] def on_batch_begin(self, **kargs) -> None:
r'''
Computes the new momentum and assignes it to the optimiser
'''
mom = super().on_batch_begin(**kargs)
self.model.set_mom(mom)
[docs]class OneCycle(AbsCyclicCallback):
r'''
Callback implementing Smith 1-cycle evolution for lr and momentum (beta_1) https://arxiv.org/abs/1803.09820
Default interpolation uses fastai-style cosine function.
Automatically triggers early stopping on cycle completion.
Arguments:
lengths: tuple of number of (sub-)epochs in first and second stages of cycle
lr_range: tuple of initial and final LRs
mom_range: tuple of initial and final momenta
interp: 'cosine' or 'linear' interpolation
model: :class:`~lumin.nn.models.model.Model` to alter, alternatively call :meth:`~lumin.nn.models.Model.set_model`
nb: Number of batches in a (sub-)epoch
plot_settings: :class:`~lumin.plotting.plot_settings.PlotSettings` class to control figure appearance
Examples::
>>> onecycle = OneCycle(lengths=(15, 30), lr_range=[1e-4, 1e-2],
... mom_range=(0.85, 0.95), interp='cosine', nb=100)
'''
def __init__(self, lengths:Tuple[int,int], lr_range:List[float], mom_range:Tuple[float,float]=(0.85, 0.95), interp:str='cosine',
model:Optional[AbsModel]=None, nb:Optional[int]=None, plot_settings:PlotSettings=PlotSettings()):
super().__init__(interp=interp, param_range=None, cycle_mult=1, scale=lengths[0], model=model, nb=nb, plot_settings=plot_settings)
self.lengths,self.lr_range,self.mom_range,self.hist = lengths,lr_range,mom_range,{'lr': [], 'mom': []}
[docs] def on_batch_begin(self, **kargs) -> None:
r'''
Computes the new lr and momentum and assignes them to the optimiser
'''
self.decrease_param = self.cycle_count % 1 != 0
self.param_range = self.lr_range
lr = self._calc_param()
self.hist['lr'].append(lr)
self.model.set_lr(lr)
self.decrease_param = self.cycle_count % 1 == 0
self.param_range = self.mom_range
mom = self._calc_param()
self.hist['mom'].append(mom)
self.model.set_mom(mom)
def _incr_cycle(self) -> None:
self.cycle_iter += 1
if self.cycle_iter == self.nb:
self.cycle_iter = 0
self.nb = self.lengths[1]*self.nb/self.lengths[0]
self.cycle_count += 0.5
self.cycle_end = self.cycle_count % 1 == 0
self.lr_range[0] = 0
if self.cycle_count == 1: self.model.stop_train = True
[docs] def plot(self):
r'''
Plots the history of the lr and momentum evolution as a function of iterations
'''
with sns.axes_style(self.plot_settings.style), sns.color_palette(self.plot_settings.cat_palette):
fig, axs = plt.subplots(2, 1, figsize=(self.plot_settings.w_mid, self.plot_settings.h_mid))
axs[1].set_xlabel("Iterations", fontsize=self.plot_settings.lbl_sz, color=self.plot_settings.lbl_col)
axs[0].set_ylabel("Learning Rate", fontsize=self.plot_settings.lbl_sz, color=self.plot_settings.lbl_col)
axs[1].set_ylabel("Momentum", fontsize=self.plot_settings.lbl_sz, color=self.plot_settings.lbl_col)
axs[0].plot(range(len(self.hist['lr'])), self.hist['lr'])
axs[1].plot(range(len(self.hist['mom'])), self.hist['mom'])
for ax in axs:
ax.tick_params(axis='x', labelsize=self.plot_settings.tk_sz, labelcolor=self.plot_settings.tk_col)
ax.tick_params(axis='y', labelsize=self.plot_settings.tk_sz, labelcolor=self.plot_settings.tk_col)
plt.show()